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Abstract
The time-dependent Dirac equation has been solved for an electron in external
static electric, static magnetic and time-dependent electromagnetic fields. We
give several examples of how the dynamics of the spin variables can couple to
the relativistic orbital motion and investigate the time evolution of the spatial
spin distribution as a function of the position for a relativistic quantum state.

1. Introduction

Spin is possibly the best known example of a quantum mechanical observable that does not have
a trivial classical counterpart. Spin is, of course, of fundamental importance in labelling and
characterizing atomic energies and associated eigenstates. The coupling of the spin variable to
the position or the velocity (spin–orbit coupling) has mainly been investigated in the context of
atomic structure. On the other hand, the famous Stern–Gerlach experiment is one of only a few
examples in which the spin actually has a dynamical impact on the spatial motion. In this case
non-relativistic field–spin coupling is due to the spatial inhomogeneity of the magnetic field.
If the electron is non-relativistic, a homogeneous magnetic field does not couple the spin to the
spatial variables and the spin performs a simple precession motion at the Larmor frequency.
In this paper we will show how the dynamics of the spin in a homogeneous magnetic field can
depend on the position and velocity of an electron in the relativistic regime.

Analytical solutions in the relativistic regime are very difficult to obtain due to the
nonlinearity induced by relativity and one depends mostly on numerical solutions to the Dirac
equation. Recently, using numerical wavefunction solutions to the one-dimensional-Dirac
equation, the time dependence of the spin has been calculated for an electron ionizing in a
strong laser field [1]. In this case the time evolution was described by the direct coupling of
the spin to the electromagnetic field and not to the electron’s position or its velocity. To the
best of our knowledge, there are no studies that investigated how the dynamics of the spin
variable can couple to the velocity or the position within a single quantum state. Is it possible
to assign to a single quantum state a spin distribution as a function of space and time? Are
there spatial regions in which the measurement of a certain spin value is more probable than
at another location?
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Here we have made a first attempt to investigate these problems. This work is part of
an ongoing project to explore novel relativistic phenomena that do not have an immediate
classical relativistic counterpart [2]. We do not investigate how the spin affects the orbital
motion, but we focus our attention on the question of how the spin’s dynamics depends on the
orbital motion.

This paper is organized into three parts of increasing complexity. In section 2 we review
how the Lorentz contraction of the spin for an electron accelerated in a static electric field can
lead to a position-dependent spin distribution. In section 3 we study the spin of an electron in a
static homogeneous magnetic field where the laser field is used to resonantly excite the electron
into a high-speed orbit. In contrast to the first example, in this case the spin is coupled directly
to the magnetic field, but for simplicity we will treat the orbital motion non-relativistically.
Section 4 deals with the relativistic spin dynamics of cycloatoms [3]. We will discuss how a
combination of the effects introduced in sections 2 and 3 will lead to a non-trivial dependence
of the spin on the genuinely relativistic orbital motion.

In each of the three investigations we have compared our approximate analytical
predictions based on classical mechanics with exact numerical wavefunction solutions to the
full time-dependent Dirac equation [4],
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�(r, t) =
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cα
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1

c
A(r, t)

)
+ βc2

]
�(r, t) (1.1)

where α and β are the 4 × 4 Dirac matrices, c is the speed of light (c = 137.036 in
atomic units), A(r, t) is the vector potential associated with the external field and �(r, t) =
(�1, �2, �3, �4) denotes the four-component Dirac spinor. The Dirac equation has been
solved on a spacetime grid using a recently developed split-operator algorithm based on the
fast Fourier transformation that is accurate up to the fifth order in time [5].

As the initial state in each of our calculations we have used

�(r, t = 0) = (2π�x2
0 )

−3/4 exp[−(r/�x0)
2/4]�x,z. (1.2)

We used �x = (1, 1, 0, 0)/
√

2 and �z = (1, 0, 0, 0) to represent initial spin states with
averages 〈Sx(t = 0)〉 = 1

2 au and 〈Sz(t = 0)〉 = 1
2 au, respectively.

2. Relativistic orbits without field–spin coupling

In the first example, we will show how the relativistic Lorentz contraction of the spin due to
large orbital speeds can lead to a position-dependent spin density. We illustrate this effect in
its purest form without any other spin-coupling and choose the simplest possible case of an
electron that is accelerated in a static electric field. This field is of strength E and it points
towards the negative x-axis, such that A(r, t) = cEtex .

In figure 1 we present five snapshots of the electron’s spatial probability density along the
x-axis defined by P(x, t) = ∫∫

dy dz
∑4

i=1 |�i(r, t)|2, where the summation extends over
all four spinor components of the wavefunction. As the electron accelerates along the x-axis
it spreads spatially until its speed approaches c. In that limit the spreading is relativistically
suppressed and the wavepacket develops into a slightly asymmetric form [6].

In figure 1(b) we display the time dependence of the spin 〈Sz(t)〉 computed from the
expectation value of the corresponding 4 × 4 spin matrix using the numerical wavefunction
solution of the Dirac equation. The spin along the propagation axis 〈Sx(t)〉 is practically
constant, whereas the spin perpendicular to the x-axis (〈Sz(t)〉) decays as the electron’s speed
increases. This decay is associated with the Lorentz spin contraction which is different from
the Lorentz length contraction in that the perpendicular component rather than the parallel
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Figure 1. Electron wavepacket in a static electric field. (a) Snapshots of the spatial probability
density taken at various times t = 0, 0.22, 0.44, 0.66 and 0.88 au. The disconnected lines are
the spin-densities associated with each state. For graphical clarity the spin distributions are only
displayed in those spatial areas in which the spatial probability distribution is larger than 10−3.
(E = 300 au, �x = 0.1 au.) (b) The average value of the spin (in au) as a function of time.
Superimposed by the circles are the predictions according to equation (2.7). The other curves are
the predictions of the classical model based on a non-relativistic orbit. The calculation using a
relativistic orbit is graphically indistinguishable from the quantum mechanical curve.

component is affected by the relativistic motion. The spin decay can be understood if we
perform a Lorentz transformation into the electron’s rest frame in which the spin remains
constant if the negative energy components in the state are not significant. The spin, when
observed from the laboratory frame (in which the Dirac equation is solved), appears to be
contracted by the Lorentz-gamma factor,

〈S(V )〉 = [1 − (V⊥/c)2]1/2〈S(V = 0)〉 (2.1)

where V⊥ denotes the velocity component perpendicular to the spin vector S [7]. In figure 1(b)
we have superimposed on the exact curve the predictions of this formula (circles), where we
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have used the corresponding classical relativistic solution for a point particle

Vx(t) = [V0x/(1 − V 2
0x/c

2)1/2) + Et]{1 + [V0x/(1 − V 2
0x/c

2)1/2 + Et]2/c2}−1/2 (2.2)

which approximates the speed of the centre of mass 〈Vx〉 quite well for electron wavepackets
with small velocity dispersion. The agreement with the quantum computation is excellent.
To demonstrate the importance of relativity with respect to the orbital motion, we also show
a graph for the spin that was based on the non-relativistic speed, Vx(t) = V0x + Et , and the
agreement is clearly only good at early times, t < 0.2 au, for which Vx/c � 1. For the
parameters used in the calculation, the average velocity was 〈Vx(t)〉/c = 0.92 after a time of
1.1 au.

Next, we will address the question of how the spin is distributed along the wavepacket. In
figure 1(b) the average value of the spin was calculated from the corresponding 4 × 4 operator
matrix Sz, in the standard Pauli representation via

〈Sz(t)〉 = 〈�(r, t)|Sz|�(r, t)〉

=
∫ ∫ ∫

dx dy dz [|�1(r, t)|2 − |�2(r, t)|2 + |�3(r, t)|2 − |�4(r, t)|2]/2 (2.3)

which suggests that the integrand could be interpreted in terms of classical statistical mechanics
as the product of a ‘position-dependent spin variable’ Sz(r, t) and a corresponding probability
distribution. We define here a spatial spin distribution function by the ratio [8]:

Sz(r, t) ≡ 1

2

|�1(r, t)|2 − |�2(r, t)|2 + |�3(r, t)|2 − |�4(r, t)|2
|�1(r, t)|2 + |�2(r, t)|2 + |�3(r, t)|2 + |�4(r, t)|2 . (2.4)

Obviously, for other spin directions it can be defined similarly as S(r, t) ≡
�†(r, t)S�(r, t)/�†(r, t)�(r, t). We will demonstrate below that this quantity matches
well the corresponding spatial spin distribution for a classical ensemble of spins. In other
words, one could be tempted to interpret S(r, t) as the average value of the spin one would
measure if the electron were detected at time t at location r. Please note that the reference to
the word ‘average’ is used in a quantum statistical sense; any individual spin measurement, of
course, leads to ± 1

2 au. From this definition it follows that 〈Sz(t)〉 = 〈�(r, t)|Sz|�(r, t)〉 =∫∫∫
dx dy dz Sz(r, t)P (r, t), where P(r, t) ≡ �†(r, t)�(r, t) is the usual spatial probability

density, given by the sum of the four squared spinor components of the wavefunction.
On top of the state in figure 1(a) we display the five spin distributions Sz(x, t) computed

from the wavepackets. The corresponding distribution Sx(x, t) along the direction of
propagation remains constant spatially as well as temporally, Sx(x, t) = 1

2 au. Initially, the
state was in a spin eigenstate, and remains so throughout the time evolution. In other words,
the spin operator Sx commutes with the Dirac Hamiltonian in one spatial direction, and the
momentum eigenstates with velocities along the x-direction are also spin Sx eigenstates. For
a direction perpendicular to the x-direction, the situation is different; the spin is not a good
quantum number for a wavepacket and Sz(x, t) decreases as a function of time and space. It
is quite interesting to note that in addition to the overall lowered spin value from snapshot to
snapshot, the spin distribution is non-uniform. The spins associated with the front edge of
the accelerated wavepacket are relatively smaller, reflecting the fact that the larger velocity
components of the wavepacket have travelled to the right-hand edge of the quantum state. One
can actually view the spin distribution Sz(x, t) as a spatially resolved ‘speedometer’ for the
quantum mechanical state in this case.

To justify this statement quantitatively, we have calculated a ‘classical’ spin distribution
from the classical Liouville phase-space density [9]:

Sclass
z (r, t) =

∫
dp 1

2

√
1 − (V⊥(p)/c)2 ρ(r,p, t). (2.5)
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It can be obtained from the initial density ρ(r,p, t = 0) ≡ ρ0(r,p) via

ρ(r,p, t) =
∫ ∫

dr0 dp0 ρ0(r0,p0) δ[r − r(r0,p0, t)]δ[p − p(r0,p0, t)] (2.6)

where r(r0,p0, t) ≡ r0 + a(p0, t) and p(r0,p0, t) denote the corresponding single-trajectory
solutions to the relativistic Newton equations with the initial values r0 and p0. Performing the
integration over r0 and p we find the simple expression:

Sclass
z (r, t) =

∫
dp0

1
2

√
1 − V 2

⊥ [p(p0, t)]/c2 ρ0(r − a(p0, t),p0). (2.7)

As an initial phase space density we have used

ρ0(r,p) = (1/π3) exp[−(r/�x)2/2] exp[−2(p�x)2]

which has the same (symmetrized) average values as the quantum mechanical expectation
values calculated from the Dirac state equation (1.2). We have superimposed in figure 1(b) the
classical spin distribution Sclass

z (x, t) = ∫∫
dy dz Sclass

z (r, t) according to equations (2.7) and
(2.4). It is practically indistinguishable from the exact Dirac spin distribution. This perfect
agreement demonstrates that some kinetic aspects of the spin dynamics can be quite well
approximated by concepts of classical (relativistic) mechanics.

3. Non-relativistic orbits with direct field–spin coupling

Let us now investigate the Lorentz contraction for a more complicated case in which the spin
variables are coupled directly to a static homogeneous magnetic field along the z-direction.
In order to bring the electron to a high speed orbit [10] we have used an additional time-
dependent electric field, E(t) = E sin(ωLt) ex , whose frequency ωL was chosen to be close to
the cyclotron frequency � = B/c associated with the magnetic field of B = Bez. To remain
focused on the effect of the Lorentz spin contraction, we exclude here for better clarity any
relativistic effects on the orbital motion. In section 4 we will demonstrate how the relativistic
treatment of the orbital motion will complicate the spin dynamics. The vector potential in this
case is given by A(r, t) = −cE sin(ωLt)/ωLex − 1

2c�yex + 1
2c�xey . In the absence of any

relativistic spin–velocity coupling, the Dirac Hamiltonian has a non-relativistic limit [11] of
the form H = [p + A(r, t)/c]2/2 − cSz�, which leads to simple Larmor precession motion
according to 〈Sx(t)〉 = cos(�t)/2 and 〈Sz(t)〉 = 1

2 for our two initial states.
Let us first discuss the Lorentz spin contraction for wavepackets with a large initial

spatial width �x. In this case the corresponding distribution of velocities is relatively narrow
(�V = 1/(2�x)) and we can approximate the state by a single (time-dependent) velocity. This
velocity and the positions are identical to those of the corresponding classical non-relativistic
trajectory solution to a system with H = 1

2 (p + A(r, t)/c)2:

x(t) = x0 + V0x/� sin(�t) + V0y/�[cos(�t) − 1] + A[cos(�t) − cos(ωLt)] (3.1a)

y(t) = y0 + V0y/� sin(�t) − V0x/�[cos(�t) − 1] + A[sin(�t) − �/ωL sin(ωLt)] (3.1b)

Vx(t) = V0x cos(�t) − V0y sin(�t) − A[� sin(�t) − ωL sin(ωLt)] (3.1c)

Vy(t) = V0y cos(�t) + V0x sin(�t) + A�[cos(�t) − cos(ωLt)] (3.1d)

with the resonant amplitude A = E/[(ω2
L − �2)]. Unless the two frequencies are

commensurate, the motion is not periodic and corresponds to a spiral-type trajectory. As shown
above, the Lorentz contraction depends only on the velocity component that is perpendicular
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Figure 2. Electron wavepacket in a static magnetic field and a laser field. The expectation value of
the spin (in au) perpendicular and parallel to the motion as a function of time (in units of the laser
period T = 2π/ωL. (V0x = V0y = 0 au, x0 = y0 = 0, � = 100 au, E = 1300 au, ωL = 90 au).

to the spin, e.g. 〈Sx(t)〉 depends only on Vy and its evolution would be modulated by a time-
dependent Lorentz contraction according to

〈Sx(t)〉 = 1
2 cos(�t)

√
1 − (Vy(t)/c)2 (3.2a)

〈Sz(t)〉 = 1
2

√
1 − (Vx(t)/c)2 − (Vy(t)/c)2. (3.2b)

In figure 2 we show that the Lorentz contraction can affect the precession motion of the spins
〈Sx(t)〉 and 〈Sz(t)〉. The amount of Lorentz contraction depends on the parameters E, �, and
ωL, leading to a non-periodic time evolution of the spin. The top line displays the average
value of the spin 〈Sz〉 which approximately follows the velocity.

Next we will analyse the corresponding spatial spin distributions. Non-uniform spatial
distributions are most pronounced for initially narrow states, associated with a larger spread
in velocities. In addition to the Larmor precession, the spins are also Lorentz-contracted
due to the corresponding velocities. As the amount of this contraction for Sx and Sz depends
directly onVy andV = |V |, respectively, we need to analyse the velocity distribution within the
wavepacket. Spatial areas of the same velocities will have the same amount of spin contraction.
To model an initially narrow wavepacket we have assumed x0 = y0 = 0 and eliminated the
initial velocities V0x and V0y from equations (3.1) to obtain the velocities as a function of the
position for a given time t

Vx(r, t) = �

2

[
sin�t

1 − cos�t
x − y

]
+ f (t) (3.3a)

Vy(r, t) = �

2

[
x +

sin�t

1 − cos�t
y

]
+ g(t) (3.3b)

where the two functions f (t) and g(t) are independent of the position. Using these position-
dependent velocities one can easily see that the lines of equal velocity Vy are straight lines
with time-dependent slopes. The contour lines of equal total velocity V are concentric circles
with a time-dependent centre.
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Figure 3. Electron wavepacket in a static magnetic field. Snapshots of the contour lines of the spatial
spin distribution. The circles are centred around the actual orbit as described by equations (3.1).
(V0x = 100 au, V0y = 0, x0 = y0 = 0, � = 100 au, E = 0, the contour levels differ by a velocity
of 5 au).

In figure 3 we present the velocity contour lines for the special case of E = 0 for which
f (t) = g(t) = 0 and an initial state with velocity V0 = (100, 0, 0) au. To better guide the eye
we have shown the contours only within circles, whose centres follow the (counterclockwise
rotating) orbit described in equations (3.1a) and (3.1b) [12]. The bottom circle reflects the
location of the initial state. The left-hand figure shows the contour lines of V at every eighth
of the cyclotron period 2π/�. These lines are, of course, identical to the iso-spin lines for the
spin distribution Sclass

z (x, y, t). At early times, the contour lines are more narrowly spaced;
this reflects the fact that the different velocity contributions in the state require some time to
drift apart. After half the cyclotron period we have the spatially widest velocity distribution
as only velocities close to 100 au fit inside the ring whose centre is characterized by the speed
V = 100 au. In each circle the contour lines with the largest radius correspond to the largest
velocity (largest spin-contraction). This velocity radius R is related to the velocities according
to R = V

√
2(1 − cos�t)/�. The maximum radius (associated with time 1

2 2π/�) amounts
to R = 2V/�, which is exactly twice the radius of the corresponding gyro-orbit associated
with speed V .

The right-hand frame in figure 3 shows the iso-velocity lines for Vy . These correspond
to the contour lines for the spin distribution Sclass

x (x, y, t) when multiplied with the Larmor-
precession factor 1

2 cos(�t). In contrast to Sz the contour lines are straight lines with a time-
dependent slope of −[1 − cos(�t)]/ sin(�t).

It is interesting to note that in the absence of the laser field, E = 0, the spin Sy(t) and
the velocity Vy(t) are perfectly ‘in phase’. In other words, the scalar product S(t) · V (t)

is time independent as one can easily derive from the corresponding equations of motion.
There are two interesting special cases. If we start with S(t = 0) = ( 1

2 , 0, 0) au and
V (t = 0) = (V0x, 0, 0), the spin direction remains parallel to the rotating velocity vector
and there is no Lorentz contraction at all with respect to the length of the spin vector. On the
other hand, if we start with S(t = 0) = (0, 1

2 , 0) au and V (t = 0) = (V0x, 0, 0), the spin
direction remains perpendicular to the rotating velocity vector and the Lorentz contraction is
constant. For the following discussion it is also important to note that the spin contraction,
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though position dependent, only attenuates the spin and it is not possible to find locations
within the wavepacket where the spin components take different signs.

4. Relativistic orbits with direct field–spin coupling

Let us now discuss the most complicated case for which the dynamics of the spin is governed
by a velocity-dependent cyclotron (Larmor) frequency and the Lorentz contraction, which is
a function of the orbital motion which itself is genuinely relativistic. The vector potential for
this case is the same as in the previous section. There exist no analytical solutions for the
relativistic orbit since the nonlinearity induced by the relativistic resonance makes the system
non-integrable and even excites chaotic orbits [13]. Previous works [3,10,14] have shown that
the spatial evolution of the wavepacket is characterized by the formation of ring-like probability
distributions that rotate around the origin with the period of the laser [15].

The corresponding classical spatial probability distribution evolves similarly to the
quantum Dirac state [16]. At early times the wavepacket follows a spiral-type orbit around
the origin, but as the laser accelerates the particles up to relativistic speeds, the wavepacket
becomes elongated with one end close to the origin. As the front end grows the packet evolves
into a rotating ‘banana’ shape which then closes to a full circle.

The formation of these relativistic rings (called cycloatoms) can be crudely mimicked
in terms of a dephasing model using a spatial distribution of quasiparticles, each of which
performs a spiral-type orbit around the origin with a slightly different Larmor frequency
[16]. By replacing the Larmor frequency � in the non-relativistic single-orbit trajectories
(equations (3.1)) by one that varies slightly with the initial velocity, one models in a very crude
way the fact that orbits with different initial velocities will experience different relativistic mass-
shifts when accelerated close to c. For the regime of our numerical parameters (ωL < �) the
entire distribution rotates counterclockwise, whereas the tail grows in the clockwise direction
relative to a coordinate frame that rotates with the laser frequency.

Let us now analyse the time evolution of the corresponding spin distribution for Sz(r, t)
(magnetic field direction). For graphical clarity we show in figure 4 the spin distribution only
for those spatial regions for which the probability density �†(r, t)�(r, t) exceeds 6 × 10−6.
At early times, the packet is non-relativistic and we see the concentric ring-like contour lines
reminiscent of those of the non-relativistic orbits explained in section 3 and displayed in
figure 3. To better guide the eye, we have included in the figure an (arbitrary, broken) circle
with the centre around the origin. The region around the origin has the smallest velocity
contributions and therefore the smallest amount of Lorentz contraction. It is quite remarkable
that even at later times (t > 0.4 au), when the tail end begins to curve inward towards the
origin, the spin contour lines in the front edge of the growing tail still follow approximately
the simple concentric circles. At later times when the tail end has closed the distribution to a
full circle at time t = 0.6 au, the front tail again contains very small velocity contributions.
This increase and decrease of the Lorentz contraction associated with different spatial parts
of the distribution can be directly associated with outward- (accelerating) and inward-going
(decelerating) spiral orbits associated with the classical dephasing model. As a result the
spin distribution Sz(r, t) seems to depend mainly on the specific position and not so much on
time.

The spin distribution Sx(r, t) at a given time t is the result of three independent relativistic
effects. The first one is the Lorentz contraction, which restricts the maximum spin value; it
depends only on the instantaneous velocity in the y-direction Vy . The second effect is due
to the relativistic mass-shift, effectively leading to a velocity-dependent Larmor frequency;
this effect is cumulative in the sense that the entire history of different Larmor frequencies
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Figure 4. Snapshots of the spin distribution in relativistic cycloatoms at various times. The circle
in the left-hand figures is arbitrary and added to guide the eye. (V0x = V0y = 0 au, x0 = y0 = 0,
� = 96 au, E = 800 au, ωL = 80 au).

contributes to the phase and the amplitude of the local spin value. A third effect is the well
known Thomas precession [17], whose frequency for a uniformly accelerated system is given
by ωT = (γ − 1)a × V /V 2. Approximating |a| with V� and assuming an average value of
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V = c/4 for the speed, the Thomas precession frequency |(γ −1)�| would amount to�/31.5,
which is much smaller than the cyclotron frequency and corresponds for our parameters to a
time even longer than the total duration of the interaction. As the final state is the result of
these cumulative and non-cumulative effects, we discuss the impact of these effects step by
step as the electron becomes relativistic.

In the right-hand frame of figure 4 we display the corresponding spin distribution Sx for
a state initially with 〈Sx(r, t = 0)〉 = 1

2 au. To better focus on the impact of relativity
on the Larmor precession, we have indicated in the lower right-hand box the value of a
function 1

2 cos(�t) associated with a (spatially constant, but time-dependent) spin density
of a wavepacket for which the spin is (artificially) decoupled from the orbital motion for each
frame. In contrast to Sz(r, t) the spin contour lines for Sx(r, t) are not concentric circles. If
the spin were only affected by the Lorentz effect, we would expect parallel lines as discussed
in figure 3. However, in addition to this effect, the faster contributions in the leading tail
experience a smaller effective Larmor frequency. As a result, the spin value lags behind the
(spin–orbital decoupled) value of 1

2 cos(�t). This effect curves the otherwise parallel contour
lines. The snapshot at time t = 4.08 T nicely illustrates both effects. Here T = 2π/ωL is the
laser period. The distributions at the centre and the tail end are out of phase but they have the
same spin value. As the spins get out of phase in a continuous manner along the distribution,
one could expect somewhere a maximum spin value of 1

2 au. However, in this case the
maximum value is associated with the leftmost part of the distribution ((x, y) ≈ (−1, 0) au)
where the velocity Vy is largest. As a result the Lorentz contraction forbids the maximum
value of 1

2 in this region. A similar effect can be observed at later times t = 9.36T when
the spins of the front end and those close to the origin are completely out of phase. Here the
maximum spin value 1

2 au is taken at the uppermost part of the distribution where the Lorentz
contraction is negligible (Vy ≈ 0). We note that the contour lines recorded at the largest time
t = 9.36T are along straight lines; all of which seem to originate at various locations close to
the origin.

Finally, we should mention that the product of the velocity and the spin operator cα · S is
nearly constant. The distribution �†cα · S/�†� depends neither on time nor on the position
as the electron is accelerated. On the other hand, we found that the invariant operator cα · S

is not very helpful in interpreting our spin data, as the product of both individual distributions,
�†cα� · �†S�/[�†�]2 depends strongly on time and space, indicating that the strong
correlation between cα and S does not permit a factorization of the expectation value.
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