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High-order harmonic generation in relativistic ionization of magnetically dressed atoms

R. E. Wagner, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560

~Received 13 April 1999!

We study the generation of high-order harmonics during the ionization process for atoms described by
relativistic classical mechanics with a special focus on retardation and Doppler shifts. We will then extend the
discussion to a regime for which the atom-laser interaction takes place in a static homogeneous magnetic field.
We demonstrate theoretically the possibility to tune the strength of the magnetic field to relativistic resonances
to enhance the frequency components in the scattered light harmonic signal.@S1050-2947~99!00810-0#

PACS number~s!: 42.65.Ky, 32.80.Fb
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I. INTRODUCTION

It is well known that the ionization of atoms and mo
ecules in strong laser fields can be accompanied by the e
sion of radiation of very high frequency@1#. For example,
experiments by Zhouet al. @2# have demonstrated the ge
eration of coherent radiation with a photon energy of 310 e
corresponding to the 211th harmonic of the laser fundam
tal frequency@3–5#.

The frequency spectrum of the scattered light has b
generally characterized by a long plateau associated with
multiples of the fundamental frequency of the laser an
relatively rapid cutoff. It has been predicted that the harm
ics are created during those moments of the interac
where the ionized electron rescatters from the nucleus@6–8#.
This led to the so-called 3Up rule and has been confirmed b
quantum-mechanical calculations. In most investigations,
maximum frequency increases with the laser intensity. Ho
ever, if the intensity is too large, the atom ionizes and
nucleus becomes irrelevant for the electron and the m
mum harmonic order drops significantly because of the l
of a rescattering center. The atomic stabilization pheno
enon ~suppression of ionization! @9# certainly increases the
maximum harmonic order, but the magnetic-field compon
of the laser, which leads to an irreversible and unavoida
drift away from the nucleus, can reduce the effect of stab
zation.

Originally, theoretical investigations examined only t
spectra of single atoms. The details of the propagation of
generated harmonics through the gas jet were neglec
Only in the past five years have theoretical studies been
ducted on the propagation effects@10–12# resulting in the
investigation of the intensity-dependent phase relations
@13–15# between the fundamental and the harmonic fie
Semiclassical studies have shown that the phase of the
duced dipole is quite universally a piecewise linear funct
of the intensity@16#. It is now believed that propagation e
fects are essential to explain the basic features of the ex
mentally observed spectra. In this paper we examine
spectra of single atoms; work that incorporates propaga
will be devoted to future studies. Our intention is not
produce quantitatively accurate experimental spectra, bu
obtain first insights into the novel relativistic dynamics
atoms in strong magnetic fields.
PRA 601050-2947/99/60~4!/3233~11!/$15.00
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In 1993, Keitel, Knight, and Burnett@17# investigated the
generation of higher harmonics for laser intensities that
so strong that a relativistic description of the atom-laser
teraction was required. They modeled the quantum state
a classical ensemble and found that the numerical spectr
the dynamics with and without the atomic binding potent
were very similar. This suggests that most of the harmon
were due to the relativistic orbit of a free electron and n
due to its interaction with the nucleus.

In this paper we will investigate whether it is possible
increase the efficiency of high-order harmonic generation
the relativistic regime by adding a homogeneous magn
field to the interaction. Despite the very large number
works that investigate higher harmonics, we are aware
only three studies that examined the scattered light spect
the presence of magnetic fields. Using a classical ensem
calculation, Connerade and Keitel@18# showed numerically
for the case of a magnetic field that is parallel to the lase
polarization direction that the scattered light spectrum a
features even harmonics. Zuoet al. @19# have applied a
single magnetic field in parallel to a two-color laser field th
ionizes the electron from the molecular ion H2

1 . Their
quantum-mechanical calculations suggested that the tr
verse magnetic confinement of the electron’s wave pac
reduces the spreading and enhances the high-order harm
generation efficiency. Very recently, Milosevic and Stara
@20# used classical orbit calculations based on the recollis
model for the magnetic-field case and found field-induc
intensity revivals in the spectra.

The paper is organized as follows. In Sec. II we descr
our model system and derive three expressions for nume
computations of the scattered light spectra using the Lien
Wiechert potential. These expressions are used in Secs
and IV. In Sec. III we show how the spectra change from
weak field to the relativistic regime. In the relativistic regim
we present analytical formulas for the spectra and comp
them with numerical results. In Sec. IV we demonstrate h
the individual regimes discussed in Sec. III are modified
an additional magnetic field and propose a simple mode
explain some of the spectral features. We also show how
relativistic resonances can be exploited to enhance the hi
frequencies in the spectra. We conclude with a discuss
and an outline of future work.
3233 ©1999 The American Physical Society
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II. THE MODEL SYSTEM AND THE SCATTERED LIGHT
SPECTRA

The relativistic interaction of a classical electron with
external laser field and a static magnetic field in the prese
of an atomic binding potential is described by the square-r
Klein-Gordon Hamilton function:

H5$c41c2@p1A~r ,t !/c#2%1/21V~r !. ~2.1!

We have chosen atomic units and the screened Coul
potentialV(r )521/A@r 211# in our simulations. It has bee
demonstrated@21# that predictions of classical trajectorie
associated with this screened potential approximate
quantum-mechanical calculations for the21/r potential
much closer than those obtained classically with the sing
21/r potential binding. The vector potentialA(r ,t) in Eq.
~2.1! is the sum of two parts, one modeling the external la
field linearly polarized along thex direction with electric-
field amplitudeE0 . The other part corresponds to a sta
homogeneous magnetic field of strengthBz along thez di-
rection:

A~r ,t !5~c/vL!E0f ~ t2y/c!sin~vLt2ky!ex1 1
2 r3~Bzez!,

~2.2!

wherevL denotes the laser frequency,k is the wave number
andex andez are the Cartesian unit vectors. The pulse en
lope functionf ( ) is chosen with a trapezoidal shape, whi
is linearly turned on and off for two optical cycles and has
constant amplitude for 30 optical cycles. The laser freque
was chosen to bevL50.15 a.u. The total interaction time i
most calculations was 3432p/vL51424.19 a.u.~34 fs!.

The trajectories were solved in canonical variables usin
Runge-Kutta fourth-order algorithm with self-adapting st
size. This algorithm is very accurate and reliable, which
necessary if very-high-frequency components of the or
need to be resolved.

For nonrelativistic field strengths, the spectrum of t
scattered light can be computed directly via the Fou
transformation of the time-dependent position, velocity,
acceleration of the electron. However, the Doppler shift, ti
contraction, and retardation effects can be important in
relativistic regime and the spectrum must be calculated fr
the solution of the wave equation for the vector poten
@22#. The scattered electric field depends on the~normalized!
observation directionn and the distanceR5ud2r u between
the detector located atd and the electron located atr . The
radiation ~far-field! part of the Lienard-Wiechert electri
field E has the well-known form

E~ t !5
1

c
n3$@n2b~ t r !#3ḃ~ t r !/@12n•b~ t r !#

3%/R~ t r !,

~2.3!

where t r denotes the retarded time defined via the impl
relation t r[t2R(t r)/c and the~scaled! electron velocityb
[v/c. Due to the implicit definition of the retarded time, th
electron trajectory needs to be inverted numerically to co
pute the scattered electric field at the detector in labora
time t @17#. In our case we are not interested in the tim
dependence of the scattered field but rather in its Fou
ce
ot

b

e

ar

r

-

y

a

s
ts

r
r
e
e

m
l

t

-
ry

er

spectrum, and this cumbersome inversion can be avoi
The energy radiated per unit solid angle per unit frequenc
the detector is defined via

I n~v!5~c/4p2!U E
2`

`

dt exp~ ivt !R~ t r !E~ t r !U2

5~1/4p2c!U E
2`

`

dt exp~ ivt !n3$@n2b~ t r !#

3ḃ~ t r !%/@12n•b~ t r !#
3U2

. ~2.4!

For the special case that the laser is so weak such tha
velocities are nonrelativistic~b!1!, we can neglect retarda
tion (t r't) and the spectrum can be computed directly fro
the Fourier transformation of the acceleration, or equi
lently, the position~dipole moment!. Switching the integra-
tion variablet to the retarded time, viat5t r1R(t r)/c, and
assuming that the detector is far away from the electron, s
that R(t r)'d2n•r (t r), where d is the distance from the
atom to the detector, we obtain the expression

I n~v!5~c/4p2!U E
2`

`

dtr@12n•b~ t r !#

3exp@ ivt r2 ivn•r ~ t r !/c#R~ t r !E~ t r !U2

. ~2.5!

For the case in which the motion of more than one electro
involved, the vector contributions of the integrand have to
summed up. The specific form ofE(t r) from Eq.~2.3! can be
inserted into Eq.~2.5! and integrated by parts using th
identity n3@(n2b)3ḃ#/(12n•b)25(d/dt)n3(n3b)/
(12n•b). We obtain a much simpler expression,

I n~v!5v2/~4p2c!U E
2`

`

dt n3~n3b!

3exp$ iv@ t2n•r ~ t !/c#%U2

. ~2.6!

Note that in expression~2.6! we have omitted the subscriptr
from the integration variable, and the cumbersome invers
mentioned above has been avoided.

In the text below we will refer toI x(v) as the spectrum
observed in the polarization direction,I y(v) in the forward
~propagation! direction of the pulse, andI z(v) as the scat-
tered fields emitted parallel to the magnetic-field compon
of the laser field. To accurately describe the high-freque
components in the spectrum, the orbit was monitored
32 768 points, which is only a very small fraction of th
actual integration steps used in the calculation. We h
computed the scattered light spectra via three different m
ods: the spectrum was first calculated from Eq.~2.4! and the
implicit relation t r[t2R(t r)/c was solved numerically for
t r for each time stept required by the integration. The spe
tra agreed precisely with those computed via the integral
Eq. ~2.5! and also Eq.~2.6!. The spectra due to Eqs.~2.5! and
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PRA 60 3235HIGH-ORDER HARMONIC GENERATION IN . . .
~2.6!, however, take more CPU time because the conven
fast Fourier transformation~FFT! routines cannot be used i
evaluating the integrals.

III. HIGH-ORDER HARMONIC SPECTRA IN THE
ABSENCE OF THE MAGNETIC FIELD

In order to get a more systematic understanding of the
complexity of the scattered light spectra, we have scan
the laser intensity and found that there are three distinct
gimes of interaction, which we review in this section. In Se
IV we will show how these regimes are modified due to t
magnetic field.

A. Weak electric-field regime

We have monitored the spectra obtained from a trajec
bound atr50 initially and with velocity ṙ5(0.1,0,0). The
electron was evolved for a time of 3000 a.u. in the absenc
any external laser field,E050. The resulting spectraI y(v)
and I z(v) ~not shown! contain a peak at the ‘‘bare atomic
frequency of vb50.995 a.u. and a rapidly falling-off se
quence of its odd-order multiples at (2n11)vb @23,24#. The
value for the atomic frequencyvb can also be obtained ea
ily by using the energy conservation and integrating num
cally dt5dx/A$2@E2V(x)#% over one atomic period, wher
E denotes the energy as given by the initial condition~E
[ ṙ2/221 in this case!.

We have repeated our simulation but subjected the a
to 34 cycles of a laser field with amplitudeE050.16 a.u. We
chose a square pulse here to have narrower peaks that
for a higher resolution due to the absence of additional pe
typically associated with a pulsed laser field. The laser
quency wasvL50.15 a.u. as in all of our simulations.

In the top of Fig. 1 we display the spectrumI z(v). The
dominant peak corresponding to the atomic frequency
slightly redshifted byDv50.051 a.u. tov50.944 a.u., which
we define here as the~field-dressed! atomic frequencyva .
Each peak in the spectrum can be easily associated w
certain linear combination of the laser frequencyvL and the
~dressed! atomic frequencyva according tov(L,M )[LvL
1Mva , whereL,M50,61,62,63, . . . . Wehave marked
the locations of these distinct frequenciesv(L,M ) in the
figure by the dashed vertical lines and labeled them acc
ing to the two integersL andM. It is interesting to note tha
only frequencies for which the sumL1M is an odd integer
have appreciable amplitudes. The absence of any even
monics (L1M5even! is due to the inversion symmetry o
the Coulomb potential. This result is expected and can
easily shown perturbatively for small displacements if o
uses the fact that the Taylor expansion of the binding fo
contains only odd powers of the position coordinates.

B. Strong electric-field regime

In the middle of Fig. 1 we display the spectrum for th
laser field strengthE050.331 a.u., which is slightly below
the ionization threshold for this particular trajectory. For th
field strength the laser harmonics are comparable or e
stronger than those associated with the atomic freque
which has been redshifted tova'0.8 a.u. The spectrum i
clearly dominated by peaks associated with the series (L,0)
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as shown by the dashed lines and (L,1). In each case the
maximum integerL is about 29 or 30. This~possibly acci-
dentally! agrees with the cutoff frequency as predicted by
32Up rule according to 0.513.2(E0/2vL)2'2930.15 a.u.
In this highly nonperturbative regime, the force due to t
laser ~0.33 a.u.! is comparable to that of the nucleus~0.38
a.u.! so that neither the laser nor the Coulomb field can
regarded as a small perturbation. As a consequence, th
ficiency of higher harmonic generation becomes maximu

In the bottom of Fig. 1 we show the spectrum correspo
ing to a laser field strengthE050.332 a.u., which is above
the ionization limit for this trajectory. The spectrum is dra
tically different and only the fundamental laser frequency
present. Its intensityI z(vL) is three orders of magnitud
larger than for E050.331 a.u. The electron has ionize
quickly and cannot rescatter with the nucleus to generate
higher frequencies. The abrupt transition between the spe
clearly shows the importance of the atomic potential w
respect to the efficiency of higher-harmonics generation
the nonrelativistic regime. If we could prohibit ionization w
would expect the generation of much higher harmonics
larger

FIG. 1. Nonrelativistic scattered light spectraI z(v) without the
magnetic field. Scattered light spectrum in the laser field w
frequencyvL50.15 a.u. for three values of the electric-field amp
tudeE0 . The dashed lines in~a! are labeled with the integers~L,M!
corresponding to the predicted location of the peaks as in (LvL

1Mva) using the dressed atomic frequencyva50.944 a.u. The
corresponding spectra are very similar in they-observation direc-
tion. The electron had the initial conditionsr (0)5(0.1,0,0) and
ṙ (0)50. ~Top! E050.16 a.u.~mainly bound dynamics! ~34-cycle
square pulse!. ~Middle! E050.331 a.u.~slightly below ionization!
~trapezoidal pulse of length 34 cycles with two cycle turn-on a
off!. ~Bottom! E050.332 a.u. ~slightly above ionization, same
pulse shape as forE050.331 a.u.).
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3236 PRA 60R. E. WAGNER, Q. SU, AND R. GROBE
laser fields. In Sec. IV we will show how suitable magne
fields may be used to achieve this.

We should mention that for the~nonrelativistic! regime
displayed in Fig. 1, the spectra are dominated by the e
tron’s orbit along thex direction and are therefore practical
identical in the y and z observation direction: I y(v)
'I z(v). The spectrumI x(v) is several orders of magnitud
smaller because a nonrelativistic dipole does not rad
along its direction of motion.

C. Relativistic electric-field regime

As the atom becomes rapidly ionized in the relativis
region, one would expect that the spectral response of
atom to the field is similar to that of a free electron in t
absence of the binding potential@17#. For this case one ca
derive analytically the scattered light spectra for the electr
In 1955, Landau and Lifshitz@25# have shown that the solu
tions to the relativistic equations of motion for a free electr
in laboratory timer (t) have to satisfy the transcendent
equations

x~ t !5
E0

vL
2 ~cosvLt21![ x̃~t!, ~3.1a!

y~ t !5
E0

2

4vL
2c

t2
E0

2

8vL
3c

sin 2vLt[ ỹ~t!, ~3.1b!

z~ t !50[ z̃~t!, ~3.1c!

where we have chosenr (0)5 ṙ (0)50 for convenience, cor-
responding to an electron at rest at the origin before the l
field is turned on. It turns out that the parametert[t
2y(t)/c is also the electron’s local time@26,27#. Equations
~3.1! describe the well-known drifting ‘‘figure-eight’’ motion
in the @ x̃(t),ỹ(t)# plane as a function of the parametert
@28#. Unfortunately, this simple trajectory is less apparent
an observer in the laboratory frame recording the emit
harmonic signals. To inspect the ‘‘real’’ motion of the ele
tron in the laboratory time and laboratory coordinates,
solve these equations iteratively and taking only the lead
orders in 1/c we obtain

x~ t !5
E0

vL
2 H cosF ~12a!vLt1

a

2
sin~2vLt !G21J , ~3.2a!

y~ t !5act2
ac

2vL
sin@2~12a!vLt2a sin~vLt !#. ~3.2b!

Here we have defined the dimensionless parametea
[E0

2/(E0
214vL

2c2), which can be viewed as a measure f
the ratio of the ponderomotive energy (E0/2v)2 to the elec-
tron’s total energy. The redshifted frequency (12a)vL has
an immediate interpretation: Due to the magnetic-field co
ponent of the laser, the electron drifts with an average sp
ac in the y direction and therefore experiences a Doppl
shifted laser frequencyvL

D in its own rest frame: vL
D

5vLA(12a)/(11a). By Lorentz-transforming this fre-
quency vL

D back to the laboratory time, we obtai
vL

DA12a25(12a)vL , which is precisely the same valu
as derived perturbatively from Eq.~3.2!.
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We should comment that the leading correction to
nonlinear relativistic response of the electron is due to
nonlinear driving force proportional to sin@vL(t2y/c)#, asso-
ciated with the magnetic-field component of the laser. T
kinematic relativistic effects, such as a nonlinear mass
crease, enter the solutions only for higher orders ofa.

It is quite remarkable that even though the electron’s m
tion in the laboratory frame is not known analytically with
out the iterative procedure outlined above, the freque
spectrum of the scattered light can be calculated fully a
lytically. The basic trick to solve the required integral of E
~2.5! is to change the integration variable to the electro
local timet, for which the expressions in Eqs.~3.1! can be
used@29–31#:

I n~v!5~v2/4p2c!U E
2`

`

dt n3~n3b!exp$ iv@t1 ỹ~t!/c

2n• r̃ ~t!/c#%U2

. ~3.3!

Using the Bessel-Anger expansion for the trigonome
functions in the exponent, the integrals can be solved fu
analytically and we obtain the spectra for the three obse
tion directions:

I x~v!5 (
m50

`

Ax~m!d2
„v2~2m11!~12a!vL…

1 (
m50

`

Bx~m!d2
„v22m~12a!vL…, ~3.4a!

I y~v!5~E0v!2/~4c3vL
2!d2~v2vL!, ~3.4b!

I z~v!5 (
m50

`

Az~m!d2
„v2~2m11!~12a!vL…

1 (
m50

`

Bz~m!d2
„v22m~12a!vL…, ~3.4c!

where the amplitudes for the odd- and even-order harmo
are given in terms of the ordinary Bessel functions of the fi
kind with integer order:

Ax~m![@~av!2/c#H (
k50

`

~21!k$@122~m1k11!~12a!

3vL /~av!#Jm1k11„av/@2~12a!vL#…

1@122~m2k!~12a!vL /~av!#

3Jm2k„av/@2~1

2a!vL#…% J2k11„vE0 /~cvL
2!…J 2

, ~3.4d!

Bx~m![@~av!2/c#H @122m~12a!vL /~av!#

3Jm„av/@2~12a!vL#…J0„vE0 /~cvL
2!…

1 (
k51

`

~21!k
„@122~m1k!~12a!vL /~av!#
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PRA 60 3237HIGH-ORDER HARMONIC GENERATION IN . . .
3Jm1k„av/@2~12a!vL#…

1@122~m2k!~12a!vL /~av!#

3Jm2k$av/@2~12a!vL#%…3J2k@vE0 /~cvL
2!#J 2

,

~3.4e!

Az~m![~12a!2~E0v!2/~4c3vL
2!

3$Jm11„av/@2~12a!vL#…

2Jm„av/@2~12a!vL#…%2 ~3.4f!

Bz~m![1/c$@av22m~12a!vL#Jm„av/@2~12a!vL#…%2.
~3.4g!

In the above we have used the symbold2(x) as a shorthand
notation for the square of the integral*2`

` dt exp(ixt)/2p. In
order to allow for a fair comparison with the results of sim
lations for finite laser pulses of durationT, we have to re-
placed2(x) in Eqs. ~3.4! with scaled sinc functionsd2(x)
5sin2(xT/2)/(px)2. However, we must note that this ap
proximation is only valid if the spacings between the pea
~equal to the redshifted laser frequency! are larger than the
inverse pulse duration: (12a)vL@2p/T.

The large drift term iny(t) in Eq. ~3.2b! suggests tha
retardation has the largest impact in the positivey direction
(n5ey). The corresponding scattered lightI y(v) contains
only the ~unshifted! fundamental laser frequencyvL . Al-
though the electron oscillates with multiples of the~red-
shifted! frequency (12a)vL , the effect due to retardatio
exactly cancels this shift as well as the harmonics such
the spectrum contains only the single frequencyvL .

It should be noted that the spectraI x,z(v) contain even
and odd harmonics of the redshifted frequency (12a)vL .
For smaller laser field strengths, one finds that the amplit
associated with (12a)vL in the spectrumI x(v) can be
smaller than that of the second-harmonic peak at 2
2a)vL . The two different forms for the amplitudes asso
ated with the even- and odd-order harmonics suggest a
ferent intensity dependence of these types of harmonic
the electric-field strength~or the frequency! is so large that
the dimensionless parameterav/@2(12a)vL# exceeds
unity and matches a zero of a Bessel function, then the
responding harmonics could be suppressed.

In Fig. 2 we compare the scattered light spectrum
tained numerically from the electron trajectory with the bin
ing potential with the analytical predictions for a free ele
tron according to Eq.~3.4!. The good agreement between t
analytical formula for a free electron and that for the ioniz
electron clearly shows that the observed harmonics
mainly due to the relativistic interaction with the field~and
not with the potential!. After the pulse, the electron ha
drifted by more than 37 367 a.u. along they direction. For
the test case ofV(r )50, the numerical and analytical curve
in each case were completely indistinguishable and the
cise peak amplitudes obtained by both methods differed
less than 1023% up to the 21st harmonic. This demonstra
nicely the reliability and accuracy of the fourth-order Rung
Kutta integration method with adaptive step size.
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The data shown correspond to a laser field strengthE0
520 a.u. associated withE0 /v'c anda50.19, which shifts
the observed fundamental frequency by 79% towards red~to
v50.12 a.u.!. This redshift becomes especially significa
for the higher harmonics. The (n11)st harmonic withn
'1/a21 has the same frequency as thenth harmonic of the
~unshifted! fundamental. For our parameters this would be
n'4.

IV. HIGH-ORDER HARMONICS SPECTRA IN THE
PRESENCE OF THE MAGNETIC FIELD

We will now investigate how the ionization dynamics an
the spectra discussed in Sec. III are affected by the pres
of a static magnetic field in thez direction @32#.

A. Weak electric-field regime

We begin our analysis by repeating the simulation lead
to the top of Fig. 1 but with a staticB field of cyclotron
frequencyV[Bz /c50.2 a.u. Figure 3 shows the spectru
in the direction parallel to the magnetic fieldI z(v). Unlike
the magnetic-field-free case, the spectra for thex and y di-
rection are very similar. Compared to the spectra forBz
50, each peak has split into two and the spectrum lo
more complicated. The vertical dashed lines in the fig
indicate the predicted peak positions according to a sim
perturbative argument and are associated with a set of t
integers.

We assume that the laser electric fieldE0 is weak enough
such that the electron experiences the Coulombic force o
in the close vicinity around the nucleus. Thus we can repl
the atomic binding potential by a simple harmonic oscillat

FIG. 2. Relativistic scattered light spectra without the magne
field. Scattered light spectrum of an~initially bound! trajectory in
the laser field with frequencyvL50.15 a.u. for the electric-field
amplitudeE0520 a.u. detected along thex direction~a!,~b! and the
z direction~c!,~d!. The graphs in~b! and~d! show the corresponding
analytical predictions according to Eqs.~3.4!, based on the free-
electron dynamics for a 34-cycle square pulse. Same electron in
conditions as in Fig. 1.
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We also assume the dipole approximation. The mo
Hamilton function for the electron in the combined las
magnetic, and atomic field in the nonrelativistic limit is d
scribed by

H5
1

2Fp1
1

2c
r3Bzez1

E0

vL
sinvLtêxG2

1
1

2
va

2r2. ~4.1!

The corresponding equations of motion can be solved a
lytically. The notation can be simplified if we assumer (0)
5 ṙ (0)50, focusing only on the relevant inhomogeneous
lution @33#,
e
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x~ t !5
E0

V2vL
22~va

22vL
2!2

3S V2vL
21~va

22vL
2!~v1

2 2va
2!

v1
2 2v2

2 cos~v2t !

2
V2vL

21~va
22vL

2!~v2
2 2va

2!

v1
2 2v2

2 cos~v1t !

2~va
22vL

2!cos~vLt ! D , ~4.2a!
y~ t !5
E0 /Vva

2

V2vL
22~va

22vL
2!2 S v2~v2

2 2va
22V2!@V2vL

21~va
22vL

2!~v1
2 2va

2!#

v1
2 2v2

2 sin~v2t !

2
v1~v1

2 2va
22V2!@V2vL

21~va
22vL

2!~v2
2 2va

2!#

v1
2 2v2

2 sin~v1t !2vL~vL
22va

22V2!~va
22vL

2!sin~vLt ! D
1

vLE0

Vva
2 sin~vLt !. ~4.2b!
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The two frequenciesv6(V,va) can be thought of as th
magnetically dressed atomic frequencies. They are define

v6~V,va![F S V

2 D 2

1va
2G1/2

6
V

2
. ~4.3!

The magnetic field splits the atomic frequency in tw
each of which can be excited independently by the lase
should be noted that the overall amplitude of the solut
reveals the possibility of resonances atvL5v6(V,va). To
excite this type of magnetically dressed atomic resona
frequency requires an extremely large magnetic-fi
strength of the orderBz5c(va

22vL
2)/vL . The resulting two-

dimensional orbits can be complicated, as the three rele
frequenciesv1 , v2 , andvL are generally not commensu
rate. In the next section we will see that the latter resona
can lead to interesting spectral properties such as an
hancement of even and odd harmonics.

If the laser field is increased, the electron’s orbit g
larger and it can also experience the nonlinearity of
atomic potential. A simple perturbative estimate based on
inversion symmetry of the atomic binding potential indica
that the nonlinear~but nonrelativistic! response of the elec
tron is characterized by the following frequencies:

v~L,M ,N!5LvL1Mv1~V,va!1Nv2~V,va!, ~4.4!

where the sum of the three integersL1M1N must be an
odd number. This formula led to the dashed lines in Fig.

B. Strong electric-field regime

Due to the presence of the strong magnetic field, the d
nition of ionization as an irreversible decay of the electron
infinity must be revisited. As is well known from the nonre
ativistic limit, a static magnetic field forces the ionized ele
as

,
It
n

e
d

nt

ce
n-

s
e
e

s

.

fi-
o

-

tron into a quasicircular spiral orbit in the plane perpendic
lar to the magnetic field and the electron can esc
irreversibly only along thez direction. In other words, an
escape is mainly possible perpendicular to the laser’s po
ization direction, which is typically the dominant ejectio
direction for the electrons.

In Fig. 4 we show the ionization spectrumI y(v) for the
E052 a.u. and aB field ~with the ‘‘scaled’’ strength! V
5Bz /c50.4 a.u. We see the strong peaks atv5vL and v
5V as expected, but also a variety of other peaks. T
circles superimposed on the graphs represent the predic
of a simple model that is based on the trajectory of a f
electron in a static magnetic field, neglecting those kinem
relativistic effects that govern the evolution of trajectori
but including all retardation effects. This model is helpful

FIG. 3. Nonrelativistic scattered light spectraI z(v). Scattered
light spectrum in the laser field with frequencyvL50.15 a.u. for the
electric-field amplitudeE050.16 a.u. and static magnetic field wit
V50.2 a.u. The dashed lines correspond to the location of the p
as predicted by Eq.~4.4! using the dressed atomic frequencyva

50.954 a.u. The inset shows the enlarged spectrum together
the labels~L,M,N! for each peak. The corresponding spectra
very similar to those in they-observation direction.
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distinguish those spectral aspects that are associated wit
tardation effects and those that are due to the relativi
nature of the orbits.

In order to derive this model, we can take the soluti
x(t) andy(t) of Eq. ~4.2! for va50,

x~ t !5
E0

V22vL
2 @cosvLt2cosVt#, ~4.5a!

y~ t !5
E0

V22vL
2 S V

vL
sinvLt2sinVt D , ~4.5b!

and use them to calculate the final scattered light spe
according to the Lienard-Wiechert formula~2.6!. Unfortu-
nately we have not been able to identify a suitable fu
analytical solution for a relativistic electron in a magne
field driven by a laser field@34#. The omission of kinetic
relativistic effects and the dipole approximation in the la
field in Eq. ~4.1! are only justified for a certain paramet
ranges. If the ‘‘radius’’E0 /(V22vL

2) of the electron in thex
direction is larger than the laser’s wavelength, the dip
approximation breaks down, leading to an upper limit of t
laser amplitude: E0!pc(V22vL

2)/vL. The approxima-
tion to neglect relativistic kinematic effects breaks down
the maximum electron velocity approaches the speed of l
c, restricting the amplitude according toE0!cuV2vLu. For
the special case of the resonanceV5vL , the latter require-
ment also restricts the time: after a timet'2c/E0 the elec-
tron’s velocity would reachc.

The homogeneous solution of Eq.~4.1! ~simple circular
orbit!, which we have omitted here, would lead to the cla
sical synchrotron motion that was first derived by Sch
@35,36#, who also obtained the total energy loss, polarizati
and relativistic contraction. The corresponding spectral d
tribution was investigated by Schwinger@37#. In our case the
laser driven part of the motion is more important than
synchrotron orbit and using Eq.~2.6! we obtain the spectra

I x,y~v!5 (
m1 ,m2

`

Cx,y~m1 ,m2!d2~v2m1V2m2vL!,

~4.6a!

FIG. 4. Predictions ofI y(v) for the analytically soluble mod-
el. Scattered light spectrum in the laser field forvL50.15 a.u.,
E052 a.u., andV50.4 a.u. The circles are the analytical pred
tions for the intensity and location of the peaks according to
~4.6!, based on the free-electron dynamics in a strong static m
netic field. The laser pulse was a square pulse with 34 opt
cycles.
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I z~v!5
E0

2

4c3~V22vL
2!2 @2V4d2~v2V!

1vL
2~V21vL

2!d2~v2vL!#, ~4.6b!

where the amplitudes for the positivex and y observation
directions are given by

Cx~m1 ,m2![
V2E0

2v2

c3~V22vL
2!2 H Jm1

8 S E0v

c~V22vL
2! D

3Jm2S E0v

c~V22vL
2! D

1Jm2
8 S E0v

c~V22vL
2! D Jm1S E0v

c~V22vL
2! D J 2

,

~4.6c!

Cy~m1 ,m2![
E0

2v2

c3~V22vL
2!2 H VJm1

8 S E0v

c~V22vL
2! D

3Jm2S VE0v

cvL~V22vL
2! D

1vLJm2
8 S VE0v

cvL~V22vL
2! D

3Jm1S E0v

c~V22vL
2! D J 2

, ~4.6d!

where the arguments E0v/c(V22vL
2) and

VE0v/@cvL(V22vL
2)# are just the ratio of the maximum

displacement in thex andy directions to the wavelength o
the scattered light frequency. The model equations of mo
Eq. ~4.5! neglected any kinematic relativistic effects and a
the magnetic-field component of the laser, so the presenc
the higher harmonics in Eq.~4.6! is exclusively a relativistic
effect due to retardation. In view of the fact that there are
fitting parameters in the simple theory, the agreement
tween the model predictions for the peak positions a
heights and the numerical data in Fig. 4 is good.

C. Resonant electric- and magnetic-field regime

In contrast to the case discussed in Sec. III, we are
aware of any nonperturbative analytical solution to a la
driven relativistic electron in a magnetic field and unfort
nately one has to rely mainly on numerical results. In ord
to understand systematically how the scattered light spe
are modified by the magnetic field for relativistic laser field
we have monitored first the time-dependent position of
electrons during the interaction with the laser pulse and
corded the maximum value of the elongation along thex
direction,xmax. The same simulation was then repeated
various magnetic-field strengthsV to compute the function
xmax(V). In the nonrelativistic regime~corresponding toE0
,0.1 a.u.!, the maximum elongation matches the predicti
according to purely nonrelativistic response with a sin
resonance,xmax5E0 /uV22vL

2u, associated with Eq.~4.5!. In
Fig. 5 we show the maximum elongations as a function

.
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the magnetic fieldV recorded for a trapezoidal pulse wit
E055 a.u. and a duration of 34 cycles with a two-cyc
turn-on and turn-off. The graph does not change too muc
the pulse duration is doubled to 68 cycles, which sugge
that the interaction time was long enough for most re
nances to develop. The dashed line corresponds to the
plitudeE0 /uV22vL

2u, which allows only for a single~cyclo-
tron! resonance atV5vL . The mismatch forV50 is
expected since the~relativistic! drift along they direction
~which is rotated into thex direction by the magnetic field!
cannot be predicted by the simple model described abov

The graph in Fig. 5 shows~at least! two windows
VP@0.06,0.10# and VP@0.13,0.21# for which the maximum
elongation depends in an erratic fashion on theB field. Small
changes in the magnetic field modify the corresponding
bits drastically. Note that these irregular windows are loca
aroundV5vL/2 and the cyclotron resonanceV5vL . The
size of these two windows depends on the laser amplit
E0 . For E0,1 a.u., we find only monotonic increases a
decreases ofxmax around the resonances, but forE0
520 a.u., e.g., this irregular belt covers a much larger ra
in magnetic-field strength:VP@0.03,0.64#. The irregular na-
ture of the orbits close to the resonances is also reflecte
the scattered light spectra, some of which do not show nic
resolved higher harmonics. This regime is, of course, hig
nonlinear due to the combination of the effects by the la
field, the magnetic-field component of the laser, and the
clotron resonance.

The numerical spectra at the resonanceV5vL suggest
that for large frequencies the intensity falls off exponentia
where the fall-off rate increases with decreasing laser fi
strengthE0 . A sample spectrum is shown in Fig. 6; for com
parison we have added a straight line to illustrate the ex
nential behavior. An exponential fall-off behavior is als
characteristic of the spectrum of the much simpler case
closed circular orbit which has been studied in detail to
plain the radiation in synchrocyclotrons@38–40#. Circular
orbits contain only a single fundamental rotation frequen
and the higher harmonics in the synchrocyclotron spect
are exclusively due to relativistic retardation effects. In o
case, however, the orbit itself already contains a wide var

FIG. 5. Relativistic resonances due to the magnetic field. T
maximum electron displacementxmax during the laser pulse as
function of the magnetic-field strengthV. The dashed line isxmax

5E0 /uV22vL
2u corresponding to the amplitude associated with

simple nonrelativistic model. The pulse was linearly turned on a
off over two cycles and had a total duration of 34 cycles with
maximum amplitudeE055 a.u.
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of frequencies. The inset of Fig. 6 shows the correspond
trajectory. The orbit is not closed and, depending on
parameterE0 , can perform a variety of quasicircular orbi
with time-varying instantaneous radii and quasiperio
modulations superimposed on the path. After the laser p
is turned off, the orbits settle in a single circular orbit, who
center is shifted from the location of the nucleus. The cor
sponding after-pulse radius can be larger or smaller than
spatial extent during the pulse depending on the details of
laser pulse shape and also depending on its amplitude.
dependence of the velocity as a function of time~not shown!
also illustrates the irregular character of the orbits at re
nance. The graph contains several abrupt changes on a s
time scale, which then can lead to large frequency com
nents in the spectrum. Along thez direction, however, the
spectra contain almost no high-frequency components, wh
is consistent with the fact that a relativistic particle radia
mainly into a small cone in the forward direction of its m
tion in thex-y plane.

Let us now return to the other resonances manifest in F
5. The resonances associated with multiples of the laser
quencyV5nvL are apparent, wheren52,3,4 and even a
very narrow resonance close toV53vL/2 is visible. It is
quite interesting to note the unusual, sawtooth shape of
resonances. This surprising shape seems to be inhere
those resonances that are associated with an integer mu
of the laser frequencyV5nvL . Quite curiously, the ex-
pected resonance locationV5nvL does not agree with the
local maximum value of each ‘‘sawtooth.’’ In each case t
numerical valueV5nvL agrees much better with the loca
tion of the geometrical center of each sawtooth. To illustr
this point, we have enlarged the peak around the cyclot
resonanceV5vL on a linear scale forE051 a.u. in Fig.
7~a!. In this case the main peak is also accompanied b
symmetric resonance aroundV5vL/2, which demonstrates
that, at least in principle, resonances can occur ifvL andV
are commensurate. The sharp decrease atV50.1726 a.u.
(xmax51100 a.u.! to V50.1730 a.u. (xmax5417 a.u.! is re-
markable.

In Fig. 7~b! we show the time dependence of the coor
nate x(t) of the two trajectories associated with these tw
nearby parametersV. The dashed line is associated with th
orbit for the smallerB field ~V50.1726 a.u.!. The two orbits

e

d

FIG. 6. The spectrumI y(v) at the cyclotron resonance. Sca
tered light spectrum in the laser field with frequencyvL50.15 a.u.,
E055 a.u., andV5vL . To illustrate the exponential fall-off, we
have added a straight dashed line. The inset shows the corresp
ing orbit in the~x,y! plane. The nucleus is located at~0,0!.
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are practically identical during the first seven optical cyc
of the pulse, but then one orbit shrinks whereas the other
grows. After about 22 optical cycles, both orbits beco
very similar again. Both orbits oscillate approximately on t
time scale of the optical period. The maximum velocity
the x and y direction is around 55 a.u. for one trajector
whereas the other trajectory has a maximum velocity of
a.u. in each coordinate direction. It is obvious that these
qualitatively different types of orbits will also lead to diffe
ent scattered light spectra. The motion along they direction
~not shown! is very similar to that of thex direction.

In Fig. 8 we demonstrate how the scattered light spe
change due to the relativistic resonances aroundV52vL
and V53vL . In Fig. 8~a! we have examined the spect
I x(v) in the close vicinity ofV52vL corresponding to
V50.28, 0.30, and 0.32 a.u. The off-resonant spectra~a! and
~c! are very similar. The main peaks can be associated w
multiples of the laser frequencyvL , and the small narrow
peaks that accompany the peaks on the left-@in ~a!# and
right-hand side@in ~c!# are the integer multiples ofV. The
spectrum associated with the resonance~b! shows that the
harmonics of the laser and also those of the magnetic fi
can become significantly increased. With the exception
the laser fundamental frequency, practically each peak is
creased by several orders in magnitude. We found tha
general those laser multiples whose frequencyv is smaller
than the resonant value ofV were typically only slightly
affected by the resonance. This becomes obvious if we a
lyze the three-photon resonance in Fig. 8~b!. The two peaks
for which v,V are not so much changed by the resonan

FIG. 7. The cyclotron resonance profile.~a! The maximum
electron displacementxmax during each laser pulse as a function
the magnetic-field strengthsV. The dashed line isxmax5E0 /uV2

2vL
2u corresponding to the amplitude associated with a simple n

relativistic model. The pulse was linearly turned on and off ov
two cycles and had a total duration of 34 cycles with a maxim
amplitudeE051 a.u. ~b! Two orbits responsible for the steep d
crease in~a!. The orbit displayed by the straight~dashed! line cor-
responds toV50.1726 a.u.~V50.1730 a.u.!.
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Again, the even- and odd-order harmonics at the resona
V53vL are drastically enhanced.

In all of the spectra we have noted that the redsh
present in the magnetic-field-free spectra discussed in

n-
r

FIG. 8. Enhancement of harmonics due to relativistic reson
ces. Scattered light spectrumI x(v) for vL50.15 a.u. and three
values of the magnetic fieldV. ~a! Around the two-photon reso
nance V52vL50.30 a.u., E051 a.u. ~b! Around the three-
photon resonanceV53vL50.45 a.u.,E055 a.u.
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III do not occur since the curved orbits prohibit the irreve
ible drift due to the magnetic-field component of the las
To the contrary, the effective Doppler shift that one cou
calculate from a time-averaged shift computed over a cir
lar orbit in thex-y plane is actually shifted to a higher effe
tive frequency.

V. DISCUSSION

It is obvious that the present work will raise more que
tions than it can answer. The relativistic interaction of las
driven electrons in extremely strong static homogene
magnetic fields is a relatively unexplored area. The stren
of theB field discussed in this work is certainly smaller th
that of neutron stars, but on the other hand they are sev
orders of magnitude larger than the static fields generate
nondestructive magnets in a laboratory setup in the millis
ond range@41#. Very recently, Kudasovet al. @42# have pro-
duced static magnetic-field bursts ofms duration and a maxi
mum amplitude of 1000 T.

Past work for the more simple case of the circular syn
rocyclotron motion showed good coincidence with the the
of radiation of a single classical electron@36#. However, pre-
liminary simulations using return maps for large laser inte
sities @43# have indicated the emergence of possible cha
behavior due to the nonlinear relation between momen
and velocity. The departure between quantum and class
predictions is well known to be enhanced for systems exh
iting chaotic motion@44#. Therefore, possible modification
in the scattered radiation spectrum due to the quant
mechanical nature of the electron are possible for our sys
Extensions for the spectra could be computed from tim
dependent solutions to the full Dirac equation@45#. A work
in this direction is presently underway and will be report
elsewhere. The nonrelativistic synchrotron motion of el
trons in a circle is fully coherent, but the radiation by re
tivistic orbits at least in the region of high frequencies
quires incoherent corrections. A similar question must
addressed for the relativistic resonances as well.

In the relativistic regime the effects due to the back re
tion of the generated fields on the electron’s orbit could
come relevant. A recent work by Keitelet al. @46# has solved
the classical Lorentz-Dirac equation to investigate the ra
tive reaction for strong-field ionization and concluded th
n
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this effect is relatively small even for intensities of the ord
of 1020 W/cm2 and visible frequencies.

The single-trajectory spectra were investigated as a
step to better understand the spectra for an ensemble of
trons. It is obvious that the ensemble-averaged spectra
not contain frequencies that are not manifest in the sing
trajectory spectrum. At least in the weak-field case, only
latter should be compared directly with the predictions o
full quantum calculation. Most of our preliminary calcula
tions that included averaging over a classical ensemble b
cally confirmed what one might expect. The ensemble av
ages enhance spectral properties that are independent o
individual trajectories’ initial condition and spectral featur
that are induced by the external field add up coherently
most of the electron orbits follow the field in a similar fas
ion. Those spectral components that depend on the in
condition of the orbit are averaged out.

Our original motivation to introduce an additional stron
magnetic field to the dynamics was to increase the dynam
impact of the atom’s nonlinearity by confining the electron
motion closer to the nucleus. In contrast to the ‘‘traditiona
higher harmonics in the nonrelativistic regime that have b
directly associated with this nonlinearity as discussed in
rescattering model, the main features of the spectra in
relativistic case seem to be dominated by the dynamical
pact of the nonlinearities associated with the relativistic c
pling to the external laser and magnetic fields. We disc
ered that relativistic resonances, which have not b
discussed before, can be exploited to increase the produc
of higher harmonics significantly@47#. With the exception of
the cyclotron frequencyV5vL , these resonances have n
nonrelativistic counterpart in the dipole approximation.
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