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High-order harmonic generation in relativistic ionization of magnetically dressed atoms
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We study the generation of high-order harmonics during the ionization process for atoms described by
relativistic classical mechanics with a special focus on retardation and Doppler shifts. We will then extend the
discussion to a regime for which the atom-laser interaction takes place in a static homogeneous magnetic field.
We demonstrate theoretically the possibility to tune the strength of the magnetic field to relativistic resonances
to enhance the frequency components in the scattered light harmonic $8t@50-29479)00810-7

PACS numbgs): 42.65.Ky, 32.80.Fb

I. INTRODUCTION In 1993, Keitel, Knight, and Burnefil7] investigated the
generation of higher harmonics for laser intensities that are

It is well known that the ionization of atoms and mol- so strong that a relativistic description of the atom-laser in-
ecules in strong laser fields can be accompanied by the emiteraction was required. They modeled the quantum state with
sion of radiation of very high frequendy]. For example, a classical ensemble and found that the numerical spectra for
experiments by Zhoet al. [2] have demonstrated the gen- the dynamics with and without the atomic binding potential
eration of coherent radiation with a photon energy of 310 eVwere very similar. This suggests that most of the harmonics
corresponding to the 211th harmonic of the laser fundamenyere due to the relativistic orbit of a free electron and not
tal frequency[3-5]. due to its interaction with the nucleus.

The frequency spectrum of the scattered light has been |n this paper we will investigate whether it is possible to
generally characterized by a long plateau associated with 0dficrease the efficiency of high-order harmonic generation in
multiples of the fundamental frequency of the laser and gne rejativistic regime by adding a homogeneous magnetic
relatively rapid cutoff. It has been predicted that the harmonsia|q to the interaction. Despite the very large number of

ics are created during those moments of the interactiof) s that investigate higher harmonics, we are aware of

\_/rvrf:_erle ;hte |tohn|zed elﬁcg&n relscattzrf] frogw the nucfﬂéuﬁ}j. b only three studies that examined the scattered light spectra in
IS led fo the so-calledis, rule and has been confirmea by .. presence of magnetic fields. Using a classical ensemble
guantum-mechanical calculations. In most investigations, the . : i
. . . . . Calculation, Connerade and Keitel8] showed numerically
maximum frequency increases with the laser intensity. How;,

ever, if the intensity is too large, the atom ionizes and th(_:for the case of a magnetic field that is parallel to the laser’s

nucleus becomes irrelevant for the electron and the maXi[;)olarization direction that the scattered light spectrum also
mum harmonic order drops significantly because of the lac€atures even harmonics. Zuet al. [19] have applied a
of a rescattering center. The atomic stabilization phenomf—s'ngle magnetic field in parallel to atwo-colqr laser flelq that
enon (suppression of ionizatior[9] certainly increases the onizes the electron from the molecular ion,'H Their
maximum harmonic Order, but the magnetic-ﬁe'd Componenguantum'mechan|Ca.| calculations SuggeSted that the trans-
of the laser, which leads to an irreversible and unavoidabl&erse magnetic confinement of the electron’s wave packet
drift away from the nucleus, can reduce the effect of stabilireduces the spreading and enhances the high-order harmonic
zation. generation efficiency. Very recently, Milosevic and Starace
Originally, theoretical investigations examined only the[20] used classical orbit calculations based on the recollision
spectra of single atoms. The details of the propagation of thenodel for the magnetic-field case and found field-induced
generated harmonics through the gas jet were neglectethtensity revivals in the spectra.
Only in the past five years have theoretical studies been con- The paper is organized as follows. In Sec. Il we describe
ducted on the propagation effedts0—12 resulting in the  our model system and derive three expressions for numerical
investigation of the intensity-dependent phase relationshigomputations of the scattered light spectra using the Lienard-
[13-15 between the fundamental and the harmonic field Wiechert potential. These expressions are used in Secs. I
Semiclassical studies have shown that the phase of the i@nd IV. In Sec. Il we show how the spectra change from the
duced dipole is quite universally a piecewise linear functionweak field to the relativistic regime. In the relativistic regime
of the intensity[16]. It is now believed that propagation ef- we present analytical formulas for the spectra and compare
fects are essential to explain the basic features of the expetihem with numerical results. In Sec. IV we demonstrate how
mentally observed spectra. In this paper we examine thée individual regimes discussed in Sec. Il are modified by
spectra of single atoms; work that incorporates propagatioan additional magnetic field and propose a simple model to
will be devoted to future studies. Our intention is not to explain some of the spectral features. We also show how the
produce quantitatively accurate experimental spectra, but teelativistic resonances can be exploited to enhance the higher
obtain first insights into the novel relativistic dynamics of frequencies in the spectra. We conclude with a discussion
atoms in strong magnetic fields. and an outline of future work.
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Il. THE MODEL SYSTEM AND THE SCATTERED LIGHT spectrum, and this cumbersome inversion can be avoided.
SPECTRA The energy radiated per unit solid angle per unit frequency at

The relativistic interaction of a classical electron with anthe detector is defined via

external laser field and a static magnetic field in the presence
of an atomic binding potential is described by the square-root | ()= (clam?)
Klein-Gordon Hamilton function:

2

fjc dtexp(i wt)R(t,)E(t,)

H={c*+c[p+A(r,t)/c]}+V(r). 2.0 = (1/4m2c) f dtexp(iwt)nx{[n—B(t,)]

We have chosen atomic units and the screened Coulomb
potentialV(r)=— 1/\[r?+ 1] in our simulations. It has been xﬁ(t NWI1-n-Bt)]?
demonstrated21] that predictions of classical trajectories ' '
associated with this screened potential approximate the

quantum-mechanical calculations for thel/r potential For the special case that the laser is so weak such that the
much closer than those obtained ClaSSica”y with the Singu|w€|ocities are nonre|ativisti©8<l), we can neg]ect retarda-
—1/r potential binding. The vector potentiél(r,t) in EQ.  tjon (t,~t) and the spectrum can be computed directly from
(2.1) is the sum of two parts, one modeling the external lasethe Fourier transformation of the acceleration, or equiva-
field ”nearly pOIarized along the direction with electric- |ent|y, the pos|t|on(d|p0|e momer)t SW|tch|ng the integra_
field amplitudeE,. The other part corresponds to a statiCtjon variablet to the retarded time, vie=t, + R(t,)/c, and

2
. (2.9

homogeneous magnetic field of strengih along thez di-  assuming that the detector is far away from the electron, such
rection: that R(t,)~d—n-r(t,), whered is the distance from the
i N atom to the detector, we obtain the expression

A(r,t)=(c/lw ) Eof(t—y/c)siN(w t—ky)e,+ 51 X(B,e,),

(2.2 °

. In(w):(C/4772) f dt,[1-n-B(t,)]

wherew, denotes the laser frequendyis the wave number, —o
ande, ande, are the Cartesian unit vectors. The pulse enve- 2
lope functionf() is chosen with a trapezoidal shape, which xexgiwt,—ion-r(t,)/c]R(t,)E,)| . (2.5

is linearly turned on and off for two optical cycles and has a

constant amplitude for 30 optical cycles. The laser frequency

was chosen to be =0.15a.u. The total interaction time in For the case in which the motion of more than one electron is

most calculations was 3427/ w| =1424.19 a.u(34 f9). involved, the vector contributions of the integrand have to be
The trajectories were solved in canonical variables using aummed up. The specific form &{t,) from Eq.(2.3) can be

Runge-Kutta fourth-order algorithm with self-adapting stepinserted into Eq.(2.5 and integrated by parts using the

size. This algorithm is very accurate and reliable, which iﬁdentity nx[(n—B) X Bl/(1—n- B)?>=(d/dt)nx (nx B)/

necessary if very-high-frequency components of the orbitsgl_n.ﬂ). We obtain a much simpler expression,
need to be resolved.

For nonrelativistic field strengths, the spectrum of the
scattered light can be computed directly via the Fourier I ()= w?/(47%C)
transformation of the time-dependent position, velocity, or
acceleration of the electron. However, the Doppler shift, time
contraction, and retardation effects can be important in the xexpliw[t—n-r(t)/c]}
relativistic regime and the spectrum must be calculated from
the solution of the wave equation for the vector potential
[22]. The scattered electric field depends on (hermalized Note that in expressiofR.6) we have omitted the subscript
observation directiom and the distanc®=|d—r| between from the integration variable, and the cumbersome inversion
the detector located at and the electron located at The  mentioned above has been avoided.
radiation (far-field) part of the Lienard-Wiechert electric In the text below we will refer td,(w) as the spectrum
field E has the well-known form observed in the polarization directioh,(w) in the forward
(propagation direction of the pulse, ant,(w) as the scat-
1 - tered fields emitted parallel to the magnetic-field component
E()= E”X{[n_ﬁ(tr)]xﬂ(tf)/[l_n'ﬁ(tr)]s}/R(tf)* of the laser field. To accurately describe the high-frequency
(2.3  components in the spectrum, the orbit was monitored for
32768 points, which is only a very small fraction of the
wheret, denotes the retarded time defined via the implicitactual integration steps used in the calculation. We have
relationt,=t—R(t,)/c and the(scaled electron velocity8  computed the scattered light spectra via three different meth-
=v/c. Due to the implicit definition of the retarded time, the ods: the spectrum was first calculated from Ej4) and the
electron trajectory needs to be inverted numerically to comimplicit relation t,=t—R(t,)/c was solved numerically for
pute the scattered electric field at the detector in laboratory, for each time step required by the integration. The spec-
time t [17]. In our case we are not interested in the timetra agreed precisely with those computed via the integrals of
dependence of the scattered field but rather in its FourieEg. (2.5 and also Eq(2.6). The spectra due to EgR.5) and

f dtnX(nxgB)

2
. (2.6
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(2.6), however, take more CPU time because the convenient 107
fast Fourier transformatio(FFT) routines cannot be used in
evaluating the integrals.

<
&

Ill. HIGH-ORDER HARMONIC SPECTRA IN THE
ABSENCE OF THE MAGNETIC FIELD

I (w) [au.]

z

10°L

In order to get a more systematic understanding of the full
complexity of the scattered light spectra, we have scanned
the laser intensity and found that there are three distinct re-
gimes of interaction, which we review in this section. In Sec. . 107p
IV we will show how these regimes are modified due to the
magnetic field.

z

I (») [au]

107

A. Weak electric-field regime

We have monitored the spectra obtained from a trajectory
bound atr=0 initially and with velocityr=(0.1,0,0). The - ]
electron was evolved for a time of 3000 a.u. in the absence of
any external laser fieldz,=0. The resulting spectrg ()
andl,(w) (not shown contain a peak at the “bare atomic”
frequency of w,=0.995a.u. and a rapidly falling-off se-
guence of its odd-order multiples ati{2 1)wy, [23,24]. The
value for the atomic frequenay, can also be obtained eas-

I (w) [au}

ily by using the energy conservation and integrating numeri- 0 ! 2 3

cally dt=dx/\{2[E—V(x)]} over one atomic period, where ® [au]

E denotes the energy as given by the initial conditi@n FIG. 1. Nonrelativistic scattered light specttgw) without the
=i?/2—1 in this casp magnetic field. Scattered light spectrum in the laser field with

We have repeated our simulation but subjected the atorfiequencyw, =0.15 a.u. for three values of the electric-field ampli-
to 34 cycles of a laser field with amplitudg=0.16 a.u. We  tudeE,. The dashed lines ifa) are labeled with the integetk,M)
chose a square pulse here to have narrower peaks that all@arresponding to the predicted location of the peaks asLia (
for a higher resolution due to the absence of additional peak$ Mw,) using the dressed atomic frequeney=0.944 a.u. The
typically associated with a pulsed laser field. The laser frecorresponding spectra are very similar in frebservation direc-
quency wasw, =0.15a.u. as in all of our simulations. tion. The electron had the initial conditiong0)=(0.1,0,0) and

In the top of Fig. 1 we display the spectrug{w). The  f(0)=0. (Top) Ex=0.16 a.u(mainly bound dynamigs(34-cycle
dominant peak corresponding to the atomic frequency i§duare pulse (Middle) Eo=0.331 a.u(slightly below ionization
slightly redshifted byAw=0.051 a.u. tav=0.944 a.u., which (trapezoidal pulse of length 34 c_ycles with twq cycle_ turn-on and
we define here as théield-dressep atomic frequencyw, . off). (Bottom) E;=0.332a.u.(slightly above ionization, same
Each peak in the spectrum can be easily associated with pé'lse shape as fd,=0.331a.u.).
certain linear combination of the laser frequengy and the
(dresseglatomic frequencyw, according tow(L,M)=Lw
+Mw,, whereL,M=0,+1,=2,£3,... . Wehave marke
the locations of these distinct frequencie¢L,M) in the
figure by the dashed vertical lines and labeled them accor
ing to the two integerd andM. It is interesting to note that ;
or?ly frequencies fgr which the suln+M is ar? odd integer laser(0.33 a.u). is comparable to that of the nucle(3.38

have appreciable amplitudes. The absence of any even he:U) SO that neither the laser nor the Coulomb field can be
monics L+ M =even is due to the inversion symmetry of rggarded as a small pertgrbaﬂon. A.‘S a consequence, the ef-
the Coulomb potential. This result is expected and can bQC'Fn;ﬁ’ Og r;gherfhgrmcinlc gehnere}[tr|10n bec;)mes maxmurr:j.
easily shown perturbatively for small displacements if one, '" € Dottom oT F1g. L we Snow the Spectrum correspond-

uses the fact that the Taylor expansion of the binding forcdd 0 @ laser field strengti,=0.332a.u., which is above

contains only odd powers of the position coordinates. the |on|;at|on limit for this trajectory. The spectrum is dras_-
tically different and only the fundamental laser frequency is

present. Its intensityf,(w,) is three orders of magnitude
larger than forEy=0.331a.u. The electron has ionized

In the middle of Fig. 1 we display the spectrum for the quickly and cannot rescatter with the nucleus to generate the
laser field strengtlEq=0.331a.u., which is slightly below higher frequencies. The abrupt transition between the spectra
the ionization threshold for this particular trajectory. For thisclearly shows the importance of the atomic potential with
field strength the laser harmonics are comparable or everespect to the efficiency of higher-harmonics generation in
stronger than those associated with the atomic frequencyhe nonrelativistic regime. If we could prohibit ionization we
which has been redshifted ®,~0.8a.u. The spectrum is would expect the generation of much higher harmonics for
clearly dominated by peaks associated with the setie8)( larger

as shown by the dashed lines and ). In each case the
g Mmaximum integer is about 29 or 30. Thigpossibly acci-
dentally agrees with the cutoff frequency as predicted by the
B~ U, rule according to 0.5 3.2(E¢/2w, )*~29%0.152a.u.

In this highly nonperturbative regime, the force due to the

B. Strong electric-field regime
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laser fields. In Sec. IV we will show how suitable magnetic We should comment that the leading correction to the
fields may be used to achieve this. nonlinear relativistic response of the electron is due to the
We should mention that for théonrelativistig regime  nonlinear driving force proportional to $ia, (t—y/c)], asso-

displayed in Fig. 1, the spectra are dominated by the elecciated with the magnetic-field component of the laser. The
tron’s orbit along thec direction and are therefore practically kinematic relativistic effects, such as a nonlinear mass in-
identical in they and z observation direction: I (w) crease, enter the solutions only for higher orderg.of
~|,(w). The spectrun,(w) is several orders of magnitude It is quite remarkable that even though the electron’s mo-
smaller because a nonrelativistic dipole does not radiatéon in the laboratory frame is not known analytically with-

along its direction of motion. out the iterative procedure outlined above, the frequency
spectrum of the scattered light can be calculated fully ana-
C. Relativistic electric-field regime lytically. The basic trick to solve the required integral of Eq.

(2.5 is to change the integration variable to the electron’s
local time 7, for which the expressions in Eg&.1) can be
Ssed[29—3j]:

As the atom becomes rapidly ionized in the relativistic
region, one would expect that the spectral response of th
atom to the field is similar to that of a free electron in the
absence of the binding potentid7]. For this case one can
derive analytically the scattered light spectra for the electron. In( )= (w?/4m?c)

f drnX(nX B)expliw[ 7+Y(7)/C
In 1955, Landau and Lifshit25] have shown that the solu- o

tions to the relativistic equations of motion for a free electron 2
in laboratory timer(t) have to satisfy the transcendental —n-T(7)/cl}| . (3.3
equations
Eo Using the Bessel-Anger expansion for the trigonometric
X(t)= — (cosw 7—1)=X(7), (3.1a  functions in the exponent, the integrals can be solved fully
et analytically and we obtain the spectra for the three observa-
2 2 tion directions:
_ 5 =0 in 20, 7=y 3.1b -
Y= 3,207 gotc SN 2oL =y(n, G (0)= 3 A(m) 6 (0= (2m+ 1)(1-a)wy)
e
z(t)=0=7%(7), (3.10 o
where we have choserf0)=#(0)=0 for convenience, cor- +mZ:0 B,(M) &*(0—2m(1-a)w), (343
responding to an electron at rest at the origin before the laser 5 3 2\ 2
field is turned on. It turns out that the parametest ly(w)=(Eqw)/(4c°w() 6 (w—w), (3.4b
—y(t)/c is also the electron’s local time26,27. Equations i
(3.1) describe the well-known drifting “figure-eight” motion L(w)= 2> A (M) (w—(2m+1)(1—a)w,)
in the [X(7),¥(7)] plane as a function of the parameter m=0
[28]. Unfortunately, this simple trajectory is less apparent for %
an observer in the laboratory frame recording the emitted + > B,(m&(w—2m(l-a)w), (3.40
harmonic signals. To inspect the “real” motion of the elec- m=0

tron in the laboratory time and laboratory coordinates, we . )
solve these equations iteratively and taking only the leadingvhere the amplitudes for the odd- and even-order harmonics
orders in 1¢ we obtain are given in terms of the ordinary Bessel functions of the first
kind with integer order:

—1], (3.29 Ax(m)z[(aw)z/c][E (—DMY[1-2(m+k+1)(1-a)

k=0

EO a
X(t)= w_E [ CO{(l— a)o t+ ESIP(Zth)

a_C X /(a0)]Inikii1(@o/[2(1-a)w ])
+[1-2(m—K)(1- @) /(aw)]

XJm,k(Cl(x)/[Z(l

y(t)=act— siN2(l—a)w t—asin(w t)]. (3.2b

2w
Here we have defined the dimensionless parameter
=E2/(E3+4w?c?), which can be viewed as a measure for
the ratio of the ponderomotive energf/2w)? to the elec- 2

tron’s total energy. The redshifted frequency&)w, has —a)o ])} ‘J2k+1(wEO/(C‘UE))] : (3.40
an immediate interpretation: Due to the magnetic-field com-

ponent of the laser, the electron drifts with an average speed

ac in the y direction and therefore experiences a Doppler-Bx(m)E[(aw)z/C][[1—2m(1—a)wL/(aw)]

shifted laser frequencyw? in its own rest frame: w_

=w V(1-a)/(1+a). By Lorentz-transforming this fre- X In(awl/[2(1— @) w 1)Io(wEy/(Cw?))

quency wE back to the laboratory time, we obtain
wE\/l— 2=(1—a)w|_, which is precisely the same value

+ —1)*([1—2(m+k)(1— /
as derived perturbatively from E¢3.2). kzl( Al M+~ 2w /(aw)]
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3

XInsavl[2(1- @) o
+[1-2(M=K)(1- @)oo /(aw)]

X In-idawl[2(1- @) o )X IalwEo/ ()]}

(3.48

© [a.u]

A (m)=(1-a)*(Eqw)?(4c3w?)

X{Im+1(aw/[2(1-a)w]) © @
—In(aol[2(1- a)w ])}? (3.4f) W'l J

B,(m)=1/c{[aw—2m(1— a)w [In(aw/[2(1— a)w ])}2.
(3.49

1 s (@) [a.u.]

|1 ||
In the above we have used the symbd(x) as a shorthand 0 05 1 03 1

notation for the square of the integrgf .. dt exp(xt)/27. In o fau] @ [au]
order to allow for a fair comparison with the results of simu- £ 2 Relativistic scattered light spectra without the magnetic
lations for finite laser pulses of duratioh we have to re-  field. Scattered light spectrum of imitially bound) trajectory in
place §%(x) in Egs. (3.4) with scaled sinc function$?(x) the laser field with frequencw, =0.15a.u. for the electric-field
=sin?(xT/2)/(wx)?. However, we must note that this ap- amplitudeE,=20 a.u. detected along thedirection (a),(b) and the
proximation is only valid if the spacings between the peaks direction(c),(d). The graphs irfb) and(d) show the corresponding
(equal to the redshifted laser frequepeye larger than the analytical predictions according to Eg&.4), based on the free-
inverse pulse duration: #Ha)w >27/T. electron dynamics for a 34-cycle square pulse. Same electron initial
The large drift term iny(t) in Eq. (3.2b suggests that conditions as in Fig. 1.
retardation has the largest impact in the posigvdirection
(n=e¢y). The corresponding scattered lighw) contains The data shown correspond to a laser field strertgth
only the (unshifted fundamental laser frequenay, . Al- =20a.u. associated with,/ w~c and@=0.19, which shifts
though the electron oscillates with multiples of tlred-  the observed fundamental frequency by 79% toward<taed
shifted frequency (- a)w,, the effect due to retardation »=0.12 a.u).. This redshift becomes especially significant
exactly cancels this shift as well as the harmonics such thgbr the higher harmonics. Then@1)st harmonic withn

the spectrum contains only the single frequengy. ~1/la—1 has the same frequency as tite harmonic of the
It should be noted that the spectiig,(w) contain even (unshifted fundamental. For our parameters this would be at
and odd harmonics of the redshifted frequency-(d) w, . n=4.

For smaller laser field strengths, one finds that the amplitude
associated with (+ a)w_ in the spectruml,(w) can be
smaller than that of the second-harmonic peak at 2(1
—a)w, . The two different forms for the amplitudes associ-
ated with the even- and odd-order harmonics suggest a dif- We will now investigate how the ionization dynamics and
ferent intensity dependence of these types of harmonics. the spectra discussed in Sec. |l are affected by the presence
the electric-field strengtkor the frequencyis so large that of a static magnetic field in the direction[32].
the dimensionless parameterw/[2(1— a)w ] exceeds
unity and matches a zero of a Bessel function, then the cor-
responding harmonics could be suppressed.

In Fig. 2 we compare the scattered light spectrum ob- We begin our analysis by repeating the simulation leading
tained numerically from the electron trajectory with the bind-to the top of Fig. 1 but with a stati& field of cyclotron
ing potential with the analytical predictions for a free elec-frequencyQ)=B,/c=0.2a.u. Figure 3 shows the spectrum
tron according to Eq(3.4). The good agreement between the in the direction parallel to the magnetic fielg{ w). Unlike
analytical formula for a free electron and that for the ionizedthe magnetic-field-free case, the spectra for xrendy di-
electron clearly shows that the observed harmonics areection are very similar. Compared to the spectra Bor
mainly due to the relativistic interaction with the fieldnd =0, each peak has split into two and the spectrum looks
not with the potentigl After the pulse, the electron has more complicated. The vertical dashed lines in the figure
drifted by more than 37 367 a.u. along theirection. For indicate the predicted peak positions according to a simple
the test case d¥(r) =0, the numerical and analytical curves perturbative argument and are associated with a set of three
in each case were completely indistinguishable and the prentegers.
cise peak amplitudes obtained by both methods differed by We assume that the laser electric fi€glis weak enough
less than 10%% up to the 21st harmonic. This demonstratessuch that the electron experiences the Coulombic force only
nicely the reliability and accuracy of the fourth-order Runge-in the close vicinity around the nucleus. Thus we can replace
Kutta integration method with adaptive step size. the atomic binding potential by a simple harmonic oscillator.

IV. HIGH-ORDER HARMONICS SPECTRA IN THE
PRESENCE OF THE MAGNETIC FIELD

A. Weak electric-field regime
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We also assume the dipole approximation. The model Eo
Hamilton function for the electron in the combined laser, X(t)= 020’ — (02— w?)?
magnetic, and atomic field in the nonrelativistic limit is de- L a oL
scribed by Q2wl+ (02— 0?) (02— w?)
L . £ 2 X T2 cofw_t)
_ 0 i 2 2.2 o
H==p+==rXxXB,e,+—sinw tg| +zwsr*. (4.1
2n e T e 2" Pobt(wiobwi=od
- w
The corresponding equations of motion can be solved ana- 0% — o *
lytically. The notation can be simplified if we assum@)
=r(0)=0, focusing only on the relevant inhomogeneous so- (02— w?)co t 4.2
lution [33], (wz—wp)cogw t) |, (4.2a
|
EO/ng w,(w%—wg—Qz)[szE-i-(wg—wE)(wi—wg)] )
y(t)zﬂz 7 7 722 ) sin(w_t)
ol — (0~ op) ol — oo
2 2 2 2 2 2 2 2 2
o (0. -0 Q) Q%+t (w;— o)) (02 —w))] )
L e gt 22 SiN(w 1) — o (02— 02— 02)(w2— wd)sin . t)
W, —w-
OT=
+ w2 Sln(th). (42b)
a

2 1/2

wt(ina)E

The two frequenciesv.({2,w,) can be thought of as the tron into a quasicircular spiral orbit in the plane perpendicu-
magnetically dressed atomic frequencies. They are defined #& to the magnetic field and the electron can escape
irreversibly only along thez direction. In other words, an
Q escape is mainly possible perpendicular to the laser’s polar-
2 i?- (43 jzation direction, which is typically the dominant ejection
direction for the electrons.
The magnetic field splits the atomic frequency in two, In Fig. 4 we show the ionization spectruj(w) for the
each of which can be excited independently by the laser. [E;=2 a.u. and aB field (with the “scaled” strength Q
should be noted that the overall amplitude of the solution=B,/c=0.4a.u. We see the strong peakswat o, and w
reveals the possibility of resonanceswat=w. (Q,w,). To = as expected, but also a variety of other peaks. The
excite this type of magnetically dressed atomic resonanceircles superimposed on the graphs represent the predictions
frequency requires an extremely large magnetic-fieldof a simple model that is based on the trajectory of a free
strength of the ordeB,=c(w2— w?)/w, . The resulting two-  electron in a static magnetic field, neglecting those kinematic
dimensional orbits can be complicated, as the three relevarmelativistic effects that govern the evolution of trajectories
frequenciesw, , w_, andw, are generally not commensu- but including all retardation effects. This model is helpful to
rate. In the next section we will see that the latter resonance S , S y

can lead to interesting spectral properties such as an en- 10
hancement of even and odd harmonics. SF
If the laser field is increased, the electron’s orbit gets — 107
larger and it can also experience the nonlinearity of the E 10.5:
atomic potential. A simple perturbative estimate based on the B E
inversion symmetry of the atomic binding potential indicates e 107
that the nonlineafbut nonrelativisti¢ response of the elec- oF
tron is characterized by the following frequencies: 107y
r

O(LMN) =L+ Mo, (Q,0,)+No_(Q,0,), (4.4 10

o [a.u.]

where the sum of the three integdrs- M +N must be an
odd number. This formula led to the dashed lines in Fig. 3. FIG. 3. Nonrelativistic scattered light spectrgw). Scattered
light spectrum in the laser field with frequeney =0.15 a.u. for the
electric-field amplituddEy=0.16 a.u. and static magnetic field with
0=0.2 a.u. The dashed lines correspond to the location of the peaks
Due to the presence of the strong magnetic field, the defias predicted by Eq(4.4) using the dressed atomic frequeney
nition of ionization as an irreversible decay of the electron to=0.954 a.u. The inset shows the enlarged spectrum together with
infinity must be revisited. As is well known from the nonrel- the labels(L,M,N) for each peak. The corresponding spectra are
ativistic limit, a static magnetic field forces the ionized elec-very similar to those in thg-observation direction.

B. Strong electric-field regime
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= 1072 ] IZ(w)_W_wE)Z[ZQ (w—Q)
5, i F 00D Fo—0)), (46
’:10-5 where the amplitudes for the positiveandy observation
10 o directions are given by
107} MEJ‘ ] QZngz ) Eqw
10_80 0.5 1 Mﬁ“l.s M ma)= CS(Qz_wE)Z{Jml(C(QLwE)>

o [a.u.]

Eow
- _ XJm, ﬁ)
FIG. 4. Predictions of ,(w) for the analytically soluble mod- c(Q°—wp)
el. Scattered light spectrum in the laser field for=0.15 a.u., 2
Eo=2 a.u., andQ)=0.4 a.u. The circles are the analytical predic- 7 Eow J Eqw
tions for the intensity and location of the peaks according to Eq. M2 C(Qz—wz) M c(Q?— wf)

(4.6), based on the free-electron dynamics in a strong static mag-

netic field. The laser pulse was a square pulse with 34 optical (4.60
cycles.
E ow
distinguish those spectral aspects that are associated vyi;h re- Cy(my,my)= —03(92 ) { ml(m)
tardation effects and those that are due to the relativistic
nature of the orbits. QOEyw
In order to derive this model, we can take the solution m, —CwL(Qz_wz)
x(t) andy(t) of Eq. (4.2 for w,=0, -
E +od! ( 2Eqw )
» i et
X(t)=Qz—02[c05th—coth], (4.59 HMe| co (02— wf)
—w?
X J (—Eow i (4.60
EO Q . . my C(Qz—wz) y .
y(t)—m w—LSInth—SIth , (4.5b L

here the arguments Eow/C(QZ—wL) and
6E0w/[CwL(QZ—wL)] are just the ratio of the maximum
displacement in th& andy directions to the wavelength of
the scattered light frequency. The model equations of motion
Eq. (4.5 neglected any kinematic relativistic effects and also
the magnetic-field component of the laser, so the presence of
'the higher harmonics in E@4.6) is exclusively a relativistic
T 2 . effect due to retardation. In view of the fact that there are no
ranges. If_the radius EO/(QZ_“’L? of the electron in thg fitting parameters in the simple theory, the agreement be-
dlrectlo_n IS larger than the 'asefs wavelength, Fhe_: de0Ie[ween the model predictions for the peak positions and
approximation breaks down, leading to an upper limit of theheights and the numerical data in Fig. 4 is good
laser amplitude: Eq<mc(Q?— w?)/w . The approxima- ' '
tion to neglect relativistic kinematic effects breaks down if
the maximum electron velocity approaches the speed of light
¢, restricting the amplitude according Ey<c|Q — w,|. For In contrast to the case discussed in Sec. lll, we are not
the special case of the resonaiee w, , the latter require- aware of any nonperturbative analytical solution to a laser
ment also restricts the time: after a tirtre 2c/Eq the elec-  driven relativistic electron in a magnetic field and unfortu-
tron’s velocity would reaclt. nately one has to rely mainly on numerical results. In order
The homogeneous solution of E@t.1) (simple circular to understand systematically how the scattered light spectra
orbit), which we have omitted here, would lead to the clas-are modified by the magnetic field for relativistic laser fields,
sical synchrotron motion that was first derived by Schottwe have monitored first the time-dependent position of the
[35,36], who also obtained the total energy loss, polarizationglectrons during the interaction with the laser pulse and re-
and relativistic contraction. The corresponding spectral diseorded the maximum value of the elongation along xhe
tribution was investigated by Schwing&7]. In our case the direction, X,,.x. The same simulation was then repeated for
laser driven part of the motion is more important than thevarious magnetic-field strength$ to compute the function
synchrotron orbit and using E¢R.6) we obtain the spectra  x,,,{(Q). In the nonrelativistic regimécorresponding t&,
" <0.la.u), the maximum elongation matches the prediction
_ 2 according to purely nonrelativistic response with a single
|x,y(w)—m12m2 Cry(My,Mp) & (@ =My =My ), resonanceXma=Eoy/|0°— w?|, associated with Eqi4.5). In
(4.6a Fig. 5 we show the maximum elongations as a function of

and use them to calculate the final scattered light spect
according to the Lienard-Wiechert formu(2.6). Unfortu-

nately we have not been able to identify a suitable fully
analytical solution for a relativistic electron in a magnetic
field driven by a laser field34]. The omission of kinetic

relativistic effects and the dipole approximation in the laser,
field in Eq. (4.1 are only justified for a certain parameter

C. Resonant electric- and magnetic-field regime
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FIG. 5. Relativistic resonances due to the magnetic field. The

;Eiéggl;rgfetf:t:s; g'est?(ii?;gli?gar’]‘ ﬁn'rl]'aeﬂ:j'?aslisezrlﬁ:gsii a5 A tered light spectrum in the laser field with frequengy=0.15 a.u.,
9 gt max Eo=5a.u.,, and)l=w, . To illustrate the exponential fall-off, we

_.E°/||Q leI (i[qrrert_spond(ljn? _tl_(?] the Iamplltu?_e asisoi:late% with ‘qmve added a straight dashed line. The inset shows the correspond-
simple nonrelativistic model. The pulse was linearly turned on an ng orbit in the(x,y) plane. The nucleus is located @0).

off over two cycles and had a total duration of 34 cycles with a
maximum amplitudée,=5 a.u.

FIG. 6. The spectrunh (w) at the cyclotron resonance. Scat-

of frequencies. The inset of Fig. 6 shows the corresponding
trajectory. The orbit is not closed and, depending on the
the magnetic field) recorded for a trapezoidal pulse with parameteiE,, can perform a variety of quasicircular orbits
Eo=5a.u. and a duration of 34 cycles with a two-cyclewith time-varying instantaneous radii and quasiperiodic
turn-on and turn-off. The graph does not change too much ifnodulations superimposed on the path. After the laser pulse
the pulse duration is doubled to 68 cycles, which suggests turned off, the orbits settle in a single circular orbit, whose
that the interaction time was long enough for most resocenter is shifted from the location of the nucleus. The corre-
nances to develop. The dashed line corresponds to the amsponding after-pulse radius can be larger or smaller than the
plitude Eq/| Q12— wf|, which allows only for a singlécyclo-  spatial extent during the pulse depending on the details of the
tron) resonance afl=w,. The mismatch for(=0 is laser pulse shape and also depending on its amplitude. The
expected since thérelativistio drift along they direction  dependence of the velocity as a function of titnet shown
(which is rotated into the direction by the magnetic fieJd also illustrates the irregular character of the orbits at reso-
cannot be predicted by the simple model described above.nance. The graph contains several abrupt changes on a small
The graph in Fig. 5 showdat least two windows time scale, which then can lead to large frequency compo-
0 e[0.06,0.10 and Q €[0.13,0.2] for which the maximum nents in the spectrum. Along ttedirection, however, the
elongation depends in an erratic fashion onBrfeeld. Small ~ spectra contain almost no high-frequency components, which
changes in the magnetic field modify the corresponding oris consistent with the fact that a relativistic particle radiates
bits drastically. Note that these irregular windows are locatednainly into a small cone in the forward direction of its mo-
aroundQ = w /2 and the cyclotron resonan€e=w, . The tion in thex-y plane.
size of these two windows depends on the laser amplitude Let us now return to the other resonances manifest in Fig.
E,. For Eg<1 a.u., we find only monotonic increases and5. The resonances associated with multiples of the laser fre-
decreases ofx,,, around the resonances, but fd&, quencyQ=nw, are apparent, where=2,3,4 and even a
=20a.u., e.g., this irregular belt covers a much larger ranggery narrow resonance close £0=3w /2 is visible. It is
in magnetic-field strengthf) [0.03,0.64. The irregular na- quite interesting to note the unusual, sawtooth shape of the
ture of the orbits close to the resonances is also reflected i@sonances. This surprising shape seems to be inherent to
the scattered light spectra, some of which do not show nicelyhose resonances that are associated with an integer multiple
resolved higher harmonics. This regime is, of course, highlyf the laser frequenc¥)=nw . Quite curiously, the ex-
nonlinear due to the combination of the effects by the lasepected resonance locatidd=nw, does not agree with the
field, the magnetic-field component of the laser, and the cylocal maximum value of each “sawtooth.” In each case the
clotron resonance. numerical valug) =nw, agrees much better with the loca-
The numerical spectra at the resonarite w, suggest tion of the geometrical center of each sawtooth. To illustrate
that for large frequencies the intensity falls off exponentially,this point, we have enlarged the peak around the cyclotron
where the fall-off rate increases with decreasing laser fieldesonance)=w, on a linear scale foEy=1 a.u. in Fig.
strengthE,. A sample spectrum is shown in Fig. 6; for com- 7(a). In this case the main peak is also accompanied by a
parison we have added a straight line to illustrate the exposymmetric resonance aroutitl= w, /2, which demonstrates
nential behavior. An exponential fall-off behavior is also that, at least in principle, resonances can occus ifand ()
characteristic of the spectrum of the much simpler case of are commensurate. The sharp decreas@at0.1726 a.u.
closed circular orbit which has been studied in detail to eX{Xy2,=1100 a.u). to 1=0.1730 a.u. X,,,=417 a.u) is re-
plain the radiation in synchrocyclotrorj88—40. Circular  markable.
orbits contain only a single fundamental rotation frequency In Fig. 7(b) we show the time dependence of the coordi-
and the higher harmonics in the synchrocyclotron spectrunmate x(t) of the two trajectories associated with these two
are exclusively due to relativistic retardation effects. In ournearby parameter@. The dashed line is associated with the
case, however, the orbit itself already contains a wide varietyrbit for the smalleB field ((1=0.1726 a.u. The two orbits
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relativistic model. The pulse was linearly turned on and off over ; : .
two cycles and had a total duration of 34 cycles with a maximum
amplitudeEy=1 a.u. (b) Two orbits responsible for the steep de-
crease in@). The orbit displayed by the straigfdashedl line cor-
responds td2=0.1726 a.u(Q=0.1730 a.u.
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1
X

are practically identical during the first seven optical cycles
of the pulse, but then one orbit shrinks whereas the other one
grows. After about 22 optical cycles, both orbits become
very similar again. Both orbits oscillate approximately on the
time scale of the optical period. The maximum velocity in
the x andy direction is around 55 a.u. for one trajectory,
whereas the other trajectory has a maximum velocity of 95
a.u. in each coordinate direction. It is obvious that these two
qualitatively different types of orbits will also lead to differ-
ent scattered light spectra. The motion along ytdirection
(not shown is very similar to that of the direction.

1 () [au.]

X

In Fig. 8 we demonstrate how the scattered light spectra { Q=046 a.u.:
change due to the relativistic resonances arond2w, _107 E
and Q=3w, . In Fig. 8a) we have examined the spectra 2 1
I«(w) in the close vicinity of 1=2w_ corresponding to 3 10°
0=0.28, 0.30, and 0.32 a.u. The off-resonant spe@rand - o
(c) are very similar. The main peaks can be associated with
multiples of the laser frequenay, , and the small narrow 107 s
peaks that accompany the peaks on the Igft-(a)] and (b) 0 ! o éw‘] ’ *
right-hand sid€in (c)] are the integer multiples df. The
spectrum associated with the resonaficeshows that the FIG. 8. Enhancement of harmonics due to relativistic resonan-

harmonics of the laser and also those of the magnetic fieldes. Scattered light spectruly(w) for w =0.15 a.u. and three
can become significantly increased. With the exception ofalues of the magnetic fiel. (a) Around the two-photon reso-
the laser fundamental frequency, practically each peak is inance Q=2w; =0.30 a.u,Ep,=1a.u. (b) Around the three-
creased by several orders in magnitude. We found that iRhoton resonanc® =3w =0.45 a.u.Ey=5a.u.

general those laser multiples whose frequencis smaller

than the resonant value & were typically only slightly  Again, the even- and odd-order harmonics at the resonance
affected by the resonance. This becomes obvious if we and)=3w, are drastically enhanced.

lyze the three-photon resonance in Fi¢o)8 The two peaks In all of the spectra we have noted that the redshifts
for which «<<Q) are not so much changed by the resonancepresent in the magnetic-field-free spectra discussed in Sec.
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[Il do not occur since the curved orbits prohibit the irrevers-this effect is relatively small even for intensities of the order
ible drift due to the magnetic-field component of the laser.of 10°° W/cn? and visible frequencies.
To the contrary, the effective Doppler shift that one could The single-trajectory spectra were investigated as a first
calculate from a time-averaged shift computed over a circustep to better understand the spectra for an ensemble of elec-
lar orbit in thex-y plane is actually shifted to a higher effec- trons. It is obvious that the ensemble-averaged spectra can-
tive frequency. not contain frequencies that are not manifest in the single-
trajectory spectrum. At least in the weak-field case, only the
V. DISCUSSION latter should be compared directly with the predictions of a
_ ) o full quantum calculation. Most of our preliminary calcula-

It is obvious that the present work will raise more ques-tions that included averaging over a classical ensemble basi-
tions than it can answer. The relativistic interaction of Iaser—ca”y confirmed what one might expect. The ensemble aver-
driven electrons in extremely strong static homogeneougges enhance spectral properties that are independent of the
magnetic fields is a relatively unexplored area. The strengthhqiyidual trajectories’ initial condition and spectral features
of the B field discussed in this work is certainly smaller than nat are induced by the external field add up coherently, as
that of neutron stars, but on the other hand they are severglst of the electron orbits follow the field in a similar fash-

orders of magnitude larger than the static fields generated Qyn  Those spectral components that depend on the initial
nondestructive magnets in a laboratory setup in the milliseczongition of the orbit are averaged out.

ond rangg41]. Very recently, Kudasoet al.[42] have pro- Our original motivation to introduce an additional strong
duced static magnetic-field bursts@$ duration and a maxi- - magnetic field to the dynamics was to increase the dynamical
mum amplitude of 1000 T. impact of the atom’s nonlinearity by confining the electron’s

Past work for the more simple case of the circular synchygtion closer to the nucleus. In contrast to the “traditional”

rocyclotron motion showed good coincidence with the theoryhigher harmonics in the nonrelativistic regime that have been
of radiation of a single classical electrf6]. However, pre-  jrectly associated with this nonlinearity as discussed in the
liminary simulations using return maps for large laser inteN—escattering model, the main features of the spectra in the
sities[43] have indicated the emergence of possible chaotige|ativistic case seem to be dominated by the dynamical im-
behavior due to the nonlinear relation between momenturact of the nonlinearities associated with the relativistic cou-
and velocity. The departure between quantum and classiCgling to the external laser and magnetic fields. We discov-
predictions is well known to be enhanced for systems exhibareq that relativistic resonances, which have not been
iting chaotic motion[44]. Therefore, possible modifications giscussed before, can be exploited to increase the production
in the scattered radiation spectrum due to the quantumgf higher harmonics significantf47]. With the exception of
mechanical nature of the electron are possible for our systeng,e cyclotron frequency)=w, , these resonances have no

Extensions for the spectra could be computed from timengnrelativistic counterpart in the dipole approximation.
dependent solutions to the full Dirac equati@tb]. A work

in this direction is presently underway and will be reported
elsewhere. The nonrelativistic synchrotron motion of elec-
trons in a circle is fully coherent, but the radiation by rela- We acknowledge helpful conversations with D. L. Hol-
tivistic orbits at least in the region of high frequencies re-land and R. F. Martin. This work has been supported by the
quires incoherent corrections. A similar question must beNSF under Grant No. PHY-9970490. We also acknowledge
addressed for the relativistic resonances as well. support from the Research Corporation and ISU for URGs.

In the relativistic regime the effects due to the back reacR.E.W. thanks the lllinois State University Undergraduate
tion of the generated fields on the electron’s orbit could beHonors Program for support of his research work. The ani-
come relevant. A recent work by Keitet al.[46] has solved mated graphics of the spectra on the web site http:/
the classical Lorentz-Dirac equation to investigate the radiawww.phy.ilstu.edu/ILP were generated by P. J. Peverly and
tive reaction for strong-field ionization and concluded thatT. R. Shepherd.
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