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LETTER TO THE EDITOR

Measure of electron—electron correlation in atomic physics
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Abstract. We propose a criterion to determine the numerical degres of global (non-operator-
specific) correlation of a multiparticle quantum system and apply it to several situations, including
electron—-atom scattering and strong-field photoionization, We show that the degree of comelation
tends to increase in the presence of the field,

Questions of correlation in many-body systems are pervasive in physics. For example, how
much information about a given system is conveyed by single-particle functions, or by two-
point correlations, or how many A -particle canonical functions are required to construct
the system’s true N-body wavefunction? Is a given excitation spectrum describable by
one-particle functions alone, or do higher order correlations or new quantum numbers play
an essential role?f

The existence of electron correlation is the source of everything deep and stiil mysterious
in multi-electron atomic physics. Without an irreducible core of electron correlation every
atomic process would be governed by effective one-particle physics. The creation of strongly
correlated states in the laboratory is often a difficult experimental task, and the analysis of
multiparticle experimental data in terms of specified correlation functions is in general
an unsolved problem. But, in addition to these well recognized practical problems, there
are purely theoretical questions that in our opinion have not been satisfactorily addressed
regarding system-global (not operator-specific) correlation: (i) how to decide which of
two N-body physical states is more cormrelated, and by precisely how much? (ii) what
quantity serves as a suttable degree of correlation? (iit) does correlation change in time in
an interesting way? and perhaps most important, (iv) can external parameters be used to
manipulate or control correlation, perhaps leading to entirely new types of atomic physics
experiments? Some discussion of these questions appears to be necessary, particularly in
matters of correlation control. There must be two parts to any such discussion—how to
calculate global muitiparticle properties such as the wavefunction correctly, and how to
calculate a degree of comelation from the wavefunction. We will begin with the second
part.

There are various ways to speak of correlation in the context of stationary problems (for
example, see {3]). Typically correlation is associated with the extent to which predictions
of a specific approximate theory disagree with exact results. A common example is the

t Permanent address: Centrum Fizyki Teoretycznej PAN, Al. Lotnikow 32.46, 02-668 Warsaw, Poland.

I The description of doubly and triply excited electron states in atoms is a good example. The modern era of
correlation in atomic physics began with the experiments of 1], which demonstrated convincingly that a helium
atom with both electrons excited could not be satisfactorily characterized by hydrogenic quantum numbers, and
the corresponding theoretical analysis of [2].
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concept of correlation energy. This simply refers to the amount by which a single single-
configuration Hartree—Fock calculation overestimates the exact energy. In this letter we
propose a measure of correlation both more precise and more global than this, in the sense
that it follows from the system wavefunction itself, and requires no comparison with any
specific approximate theory or reference to any specific variable such as energy. One
important consequence is that it can be generalized straightforwardly to time-dependent
sitnations, including laser excitation, as we will show.

Naturally one cannot expect to pin a unique meaning to such a common word in
physics as correlation, but our proposed definitior of a degree of correlation has simple and
attractive properties, and we will describe some applications of it. The proposed definition
is applicable to all many-pasticie fermionic and bosonic systems. For simplicity we will
discuss it here in the ‘smallest’ fundamental context, a two-clectron atom. This is the
context closest to correlation control via laser excitation, and also one with long-standing
interest [4, 5].

Let the exact two-electron wavefunction be W({x;,x;). The so-called ‘canonical
representation’ [6] of W is characterized by a sum over only a single-particle index}

W(xy, x2) = 3 Daba(1, %2) (1
o

where b, (x;, xo) is a Slater determinant of specific orthonormal single-particle orbitals for
fermions and a product of identical orbitals for bosons. In strong contrast to usual basis set
expansions, given W(xy, xz), the canonical representation is unigue, and its uniqueness is
the key to our proposal. We identify the amount of correlation roughly with the ‘number’
of different functions b, necessary to construct the exact two-particle wavefunction. It is
not difficult to build up from this rough idea several precise definitions (which will be
time dependent because W is time dependent, even though we do not indicate if). We have
proceeded as follows. The normalization for W (x,, x2) leads to the obvious condition for the
coefficients 3", | D,|? = 1, which shows that each squared coefficient can be interpreted as a
weight (probability). The average probability | D,]? is then given by 3", |Dy|*. The inverse
of this is the ‘number’ of effectively non-zero probabilities, so a degree of correlation K is
defined in this way:

e |
K= [z |D,,;4] . @)

In contrast to some other similar and also ‘natural’ definitions, K has the following desirable
properties: (a) it is independent of the representation of the wavefunction, so that, for
example, X is the same in configuration and momentom space; (b) K is also gauge invariant,
which is important for systems in the presence of electromagnetic (laser) fields; and (c) it
cbviously achieves its minimum value of 1 for the least correlated state, a single Slater
determinanty.

Although X has attractive properties, there is still a question how to compute it, even
if we know the exact two-electron wavefunction W{x;, x»), because W will typically not be
expressed in canonical form, The key role is played by the single-particle density operator

f The superposition given in (1) is sometimes called the Schmidt decomposition [7].
I Note that the Slater determinant itself embodies antisymmetry, or ‘Pauli correlation” which is not counted by X.
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o(x,x") which is obtained from the total density matrix ¥ @ 9* by integrating out all
particle coordinates and spins with the exception of those for one particle:

plx,x) = f dxa W(x, x2)¥*(x', x3). (3

The operator p(x, x’) is Hermitian and its eigenvalues are the desired coefficients |D,|2.
[For N fermions each eigenvalue is N-fold degenerate and has to be multiplied by N to
give | Dy %]

The single-particle ¢ provides both a constructive route to calculation of X and an
alternative interpretation of K via statistical mechanics. Starting from the symmetric two-
particle wavefunction ¥ (x,, x;), if the reduced density matrix p corresponds to a pure
singie-particle state [tr 4% = 1] then X = 1 and the state W is uncorrelated. This means that
tracing out the second electron’s coordinates does not decrease the information about the
first one in the full wavefunction. On the other hand a mixed state for p[r p? < 1] gives
K > 1 and indicates a correlated state W. This is clear because the two-particle correlation
‘mixes’ otherwise independent particle orbitals and K reflects the information loss due to
tracing. In fact, the logarithm of K is sometimes called Stiickelberg entropy.

To illustrate the meaning of K purely qualitatively, consider a two-particle wavefunction
whose relative-coordinate wavepacket is tightly localized but whose center-of-mass
wavepacket is very broad. Obviously the system is in a highly comrelated (large K') two-
particle state. Even though we have little information about the location of either particle
separately, if we find one of them we have practically found the other. Conversely, in other
words, if we trace out the first particle’s coordinates the other particle can only be located
somewhere within the range of the (large) centre-of-mass packet. So the one-particle tracing
induces a great loss of information, which is reflected in the large K of the original state.

More quantitative work requires two-particle wavefunctions. A context of particular
interest recently is two-electron systems in strong laser fields. A key question is whether
or when strong radiative forces can compete with e—e repulsion and influence correlation.
Burnett [8] has taken a step in this direction by solving for the wavefunction of double
ionization in a stripped-down two-electron mode] without invoking Hartree-Fock methods.
His results provide a useful critique of standard time-dependent two-electron theory in
laser fields. Kulander et al [9], have discussed carefully the inevitable flaws in Hartree—
Fock methods in the context of ionization, in which case the continuous decrease in bound
electron probability erroneously alters the strength of the core potential. Pindzola et al
[9], have compared exact and time-dependent Hartree-Fock wavefunctions calculated for
photoionization of a one-dimensional two-electron atomt

We now use basically the same model to evaluate X in a number of instances of interest.
As a reminder [11, 12], the Hamiltonian whose wavefunctions we will use is

H=15pt+1pl - Z/(] + )2 — Z/(xF + DV2 + 1051 — )2 + 11V2, (4)

It describes the interaction of two electrons with each other and each of them with a nucleus
of positive charge Z via the same smoothed 1D Coulomb potential 1/(x%+ 1)!/2, Since we
start in the ground state, and there are no spin interactions, we can take the spatial part of
the wavefunction W(x;, x2) to be symmetric.

First we have calculated K for the ground state for Z = 1,2 and 3, With increasing
nuclear charge Z one would expect that e— correlations become less and less important

1 Details of such 1D atoms have already been explored in the single-electron case. See, for example [11].
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Figure 1. Growth of correlation during inelastic Franck-Hertz scattering. The inset shows the
cotresponding time dependence of excited H level probabilities P, (r).

as the electron—nucleus interaction becomes more dominant. This expectation is indeed
confirmed by the numerical values for K. The model ‘negative jon’ (Z = 1) has a significant
ground state comrelation, X = 1,10, but the ground states for Z = 2 and 3 have much smaller
valees, K = 1.01 and 1.007, respectively. Indeed, when applied to these ‘atoms’, Hartree—
Fock theory makes an error of 5.1% in the Z = 1 ground state energy, whereas it gives all
other ground state energies (Z = 2, 3, 4. ..) almost perfectly {13].

We have also calculated the energy expectation in the most significant canonical basis
state b, {constructed from the leading eigenvector of the one-electron density matrix). The
value was off by 5.4% from the exact result, and thus was slightly less accurate than the
value computed from the corresponding Hartree-Fock state. This illustrates that p(x, x”)
is not designed with energies in mind, whereas the Hartree—Fock states are constructed to
minimize the energy uncertainty of the Hamiltonian.

We now extend the discussion to encompass time dependences. We must emphasize
that, due to the uniqueness of the superpesition in (1) for each W, the basis states are
different at each moment in time. Again there is a strong contrast with the more familiar
situation in which a basis set is time-independent and the expansion coefficients carry all the
information about changes in time. In our first example we have calculated K throughout
the scattering experiment ¢ 4 H(n = 1) — e + H*, one of the most significant in atomic
physics [14]. Initially the two electrons are well separated and uncorrelated. We chose the
incident kinetic energy too low to icnize the bound electron, in which case there must be
two well separated electrons finally as well as initially. However, one expects the final state
to be correlated. The interesting question is: what is the degree of final state Franck~Hertz
correlation? Again, the soft-core 1D Coulomb interaction permits exact numerical soletion
of the time-dependent Schridinger equation as an initial value problem, and probably for
the first time in non-trivial two-electron scattering. Thus K can be calculated exactly from
the distant past, throughout the interaction zone, and into the final state. The result is shown
in figure I. The dramatic rise in X by more than 4 occurs at the time of the e-H collision,
and notably X does not decrease afterwards, This is as it should be, It is the multiplicity of
otbitals available in the final state (even in 1D) that allows increased e—e correlation. The
inset in figure 1 shows the populations of several states in H* through the course of the
collision. In figure 2 we show the actual weights of the most significant eigenvalues of o
at the end of the experiment.

t Significant progress in the theory of e-H scattering has been achieved recently with large-basis close-caupling
calculations by [15).
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Figure 2. The eigenvalue distribution corresponding to the two-electron final state in the
scattering experiment of figure 1.

Finally, we coine to the question of laser control of correlation. We restrict our analysis
here to the ‘negative ion’ (Z = 1) and calculate K for several numerical experiments
that have aiready been reported elsewhere [12,13]. In each case the two-electron system,
initially in the ground state, is subjected to a laser pulse of duration 20 optical cycles and we
have continued to monitor the time development of the wavefunction after the laser turn-off
for 10 more optical cycles. We will discuss three different parameter regimes which differ
by the degree of activity of the individual elecirons.

The first regime [12] (low laser frequency) cortesponds to one-photon detachment. The
field is taken strong enough to detach the outer electron completely in 20 optical cycles,
but weak enough to permit the deeply bound core electron to remain completely passive,
Curve (a) in figure 3 shows growth to an asymptotic value close to K = 2, which indicates
that it would be sufficient to describe this photodecay by single-eleciron theory using only
two orbitals. Indeed, the largest two weights |D,|? contribute 99.7% to the norm.

The next regime is characterized by a detaching outer electron and an active but still
bound core electron [12]. This situation can be achieved when the laser pulse is in resonance
with a bound-bound transition of the core electron. Curve (b) of figure 3 grows well above
K = 2. Tt is interesting to note that the core Rabi oscillations are manifest in the (periodic)
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Figure 3. The correlation X as a function of time for three different regimes in laser intensity
and frequency . The laser pulse has a two-cycle linear turn on and off and a constant field
strength £ between the second and eighteenth cycle. (2) The inner electron is passive and the
outer electron is 98.4% photodetached under the absorption of a single photon (£ = 0.005 au,
@ = 0.08 au). (b) The inner electron is mainly bound but very active and the outer electson
is 85.5% photodetached (£ = 0.05 an, @ = 0.395 au). (c) Both electrons are active and
ionize rapidly with a detachment probability 85.3% and a double-ionization probability of 31.3%
(£=05au 0=10au).
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growth spurts of correlation. In the last example (high photon frequency and greater field
strength [12]) we enter a regime in which both electrons become appreciably ionized. In
this regime direct one-photon double ionization, core shake-up and other processes are
all possible, and K reaches a still larger value. It may be more reasonable to say that
correlation is actually under control when one demonstrates an example in which X is
induced to decrease rather than increase, but the examples in figure 3 do demonstrate the
behaviour of a specific numerical measure of correlation, and they do demonstrate that it is
notably sensitive to the parameters of an applied radiation field.

In summary, we believe that X provides a natural measure of correlation in a many-
electron quantum system and also one that is easy to calculate, given any many-particle
wavefunction. It provides a precise numerical index to judge to what degree approximate
calculations have included comelation. Again we emphasize that X is basis-independent.
As an example, the K parameter has been calculated {16] for the 4snd 'D; Rydberg series
with principal quantum number » = 5 to 24 of the Ca atom, using an ab initic MQDT
method. These studies have given some first indication that the mixing of doubly and
singly excited states manifests itself in an abnormally high value of K. It also turns out that
the K parameter we introduced in this letter can be applied to measure quantum signatures
of classical chaos on the level of a single quantum state. Of course, the single X parameter
contains only partial information about correlation. Various higher moments and weighted
measures of the eigenvalue distribution of p could also be analysed. In the three cases
mentioned above the eigenvalues themselves fall off nearly exponentially.
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