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Abstract: We investigate numerically the solution of Dirac equation and
analytically the Klein-Gordon equation and discuss the relativistic motion of
an electron wave packet in the presence of an intense static electric field.  In
contrast to the predictions of the (non-relativistic) Schr�dinger theory, the
spreading rate in the field's polarization direction as well as in the transverse
directions is reduced.
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Until recently, the fully relativistic interaction of an atom with an intense laser field had been
analyzed in only a few writings. A theoretical description used to compute ionization rates for
hydrogen, taking into account the relativistic acceleration of electrons by the action of an
intense laser source, was pioneered in large part by Reiss [1-2].  Experimental evidence
indicating a deviation from non-relativistic theory and the availability of higher intensity
lasers has spawned more recent studies in this area [3-6].

If one has a laser field that is sufficiently strong, theory has shown that the
ionization rate of atoms can be a decreasing function of intensity [7].  Numerical simulations
have also indicated that ionization in hydrogen can be suppressed by realistic laser pulses [8-
10].  This stabilization has been confirmed by several research groups and has begun to
stimulate experimentation [11-12].  An important question in this area concerns the fate of
stabilization when relativistic effects are considered [13-18].

One can use a free electron wave packet moving in a static electric field as a first step
in analyzing the relativistic corrections to the electron motion in strong laser fields [19].
Such a simplistic system allows for a clear look at purely relativistic effects while ignoring
phenomena produced by the temporal characteristics of a finite laser pulse, the atomic
Coulomb field and the magnetic field.  We report our first results from an exact numerical
solution to the Dirac equation and an analytical solution to the approximate Klein-Gordon
equation.

Among our most significant findings is an alteration in the growth of the second-
order moments, interpreted as a suppression in the growth of the electron wave packet's spatial
width.  As the electron approaches the speed of light in the long-time limit, the wave packet
appears nearly frozen in the field's polarization direction.  Suppression of growth in packet
width is also apparent in the plane perpendicular to the polarization axis, but to a lesser
extent.  The role of non-relativistic wave packet spreading has been investigated in strong-field
ionization [20], but the characteristics of relativistic electron wave packet spreading have
never, to the extent of our knowledge, been previously discussed.  We will describe the details
of the subnatural spreading, the steepening of the front edge of the wave packet and a
comparison with the predictions of a classical relativistic ensemble in a separate note. [21]

A static electric field E pointing in the x-direction acting on an electron can be
described by the vector potential

A E e( )t c t c E t x= - = - (1)

The motion of a quantum electron in such a field satisfies the time-dependent Dirac equation:
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where   
t
a  and   

t
b  are 4x4 Dirac matrices and   

r
Y( , )r t  is the well-known 4-spinor [21].  A

solution to this equation is made possible by discretizing the three Cartesian coordinate axes
over a pre-determined volume into 64 to 512 subdivisions.  A generalized split-operator
Fourier algorithm was used to solve the equation in time. [21].  Our initial state used in the
following calculations was:
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As in all ionization studies, the initial state of the electron is localized.  This is essential to
study the dynamics spatially and temporally resolved. The initial spatial uncertainty
D x= D y= D z= s  was chosen such that the momentum width was small enough to insure

that negative energy contributions (from the Dirac sea) were negligible.
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Neglecting spin and possible e-p pair production, we develop an analytical description
of the system.  Relativistic and for now, spinless, electrons are described by a square root
Klein-Gordon Hamiltonian:
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We then use our exact numerical solutions to the Dirac equation to test the validity of this
approximate approach.  

In analyzing the Heisenberg equations of motion, i.e. 
  
i
d
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Hh r r= [ ], , we can fully

solve the operator equations for the position:
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The momentum operators are conserved over time since the Hamiltonian of Eq. (4)
commutes with each of the canonical momenta px, py and pz.  From the time derivative of
Eqs. (5), one can easily see that Çy  and Çz  go to 0 while Çx ® c.  The motion in the plane
perpendicular to the polarization axis of the field is altered although there is no force in that
plane.  This deceleration is a simple consequence of the fact that the speed

v t x y z( ) = + +Ç Ç Ç2 2 2  cannot attain the speed of light c.  As the electron is accelerated in the

x-direction, it must slow down in the y- and z-directions.
The second-order moment is defined by

Dx2  = x x-( )2  (6)

for x and in the same way for y and z.  Our notation is simplified, if we restrict our analysis
to symmetric initial states here: Y Yr r, ,t t=( ) = - =( )0 0  and f fp p, ,t t=( ) = - =( )0 0 .

The time evolution of the width is determined by all higher-order moments of the
momentum because of the square root of the operators in the expectation values at t=0. In the
nonrelativistic limit these equations reduce to Dx tNR ( )

2  = D Dx p t mx
2 2 2 2+ /  for x and

similarly for y and z.
        The relativistic case is of interest in the long-time limit:
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A logarithmic divergence occurs in the spatial variances for the transverse directions according
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ln  for the z-direction.  The spreading rate undergoes
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a significant reduction as the electron approaches the speed of light and the spatial probability
distribution is frozen in the x-direction.  If we assume all velocity contributions in the initial
state to be negligible in comparison to the speed of light, i.e. a wave packet initially at rest,
Eq. (7) can be reduced to

D Dx t x
c p

q E
x2 2

2 2

2 2( )®¥ = + (8)

and directly interpreted.  A nonrelativistic particle initially at rest takes a time t*=
mc

qE
 to

exceed the speed of light.  The wave packet spreads as it is accelerated according to the
nonrelativistic formula Dx tNR ( )

2  = D Dx p t mx
2 2 2 2+ / .  When t=t*,  we obtain Eq. (8) for

the relativistic width.  Using this reasoning, we could conclude that the Schr�dinger theory
would roughly agree with the relativistic theory up to t=t*.  We would also expect the final
width to be proportional to 1/E because the electron approaches c more quickly and has less
time to spread for stronger E fields.
        We continue with a graphical depiction of our results.  To ease in this representation,
we adopt atomic units with  |q|=   h=m=1 and c»137.  Our initial state is the first component of
(3) and we choose E=1000 a.u. (ca. 5 ´ 1012V/cm), meaning t*=0.137 a.u.  The square root
expectation values in Eqs. (6) were evaluated numerically in Fourier space.

Figure 1 is a plot of the variance in each of the three coordinate directions as predicted
by relativistic Klein-Gordon theory Eqs.  Also in this figure is the variance according to
nonrelativistic Schr�dinger theory for which D D Dx t y t z tNR NR NR( ) = ( ) = ( ).  The predictions
agree for short times but soon begin to diverge.  As the electron approaches the speed of light,
the spreading rate in all three spatial directions is severely retarded.  In fact, spreading in the x-
direction approaches the value Dx t®¥( )  =  0.6935 from Eq. (8) and in the transverse
directions is reduced logarithmically.
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Fig. 1.  The graphs show the temporal growth pattern of the spatial width obtained from Eqs.
(6) Dx(t), Dy(t) and Dz(t) together with the non-relativistic width DxNR(t).  Superimposed on
the graphs for Dx(t), Dy(t) and Dz(t) are the width determined from the time-dependent wave
function solution obtained from the full Dirac equation Eq. (2) (dash lines).  The two graphs
are indistinguishable. [E=1000 a.u., initial quantum state as in Eq. (3) with s=Dx(t=0)=0.1
a.u.]

Figure 1 also serves to compare our (approximate) theoretical results obtained from
the Heisenberg equations of the (approximate) Klein-Gordon Hamiltonian and our (exact)
numerical results obtained by a full solution to the Dirac equation.  Limits on our grid size for
the numerical solution caused by memory restrictions made it possible to trace the time
evolution of the Dirac wave packet only to t=0.3 a.u. The spatial variances calculated from
this wave packet are in superb agreement with the widths predicted by the Heisenberg
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equations.  The approximate relativistic Klein-Gordon theory used for an analytical analysis
agrees with our exact Dirac results (dashed lines) as well.  After projecting our wave function
on the negative energy eigenstates, we found that throughout the entire interaction, the
population in the Dirac sea stayed at negligible levels.  In addition, the monotonic time
evolution of the first order moment (not presented) also confirms that effects due to the
Zitterbewegung are not so important here.

Figure 2 shows the spatial profiles of our Dirac wave packet in both the x- and z-
directions.
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Fig. 2.  Displayed are the spatial probability distributions P x t dydz x y z tii
, , , ,( ) º ( )òå Y

2
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Y , , ,( )òå

2
in the x- and z direction at time t=0.1 a.u.  For

comparison, the dashed lines show the corresponding distributions obtained from the non-
relativistic Schr�dinger time evolution.  The initial wave packet was centered initially at
r =(Ð3, 0, 0) for better graphical clarity.  The non-relativistic wave packet has moved to

x(t=0.1a.u.) =Ð3a.u. + Et2 2/ = 2.a.u. [Same parameters as in Fig. 1]

We can explain the observed suppression in wave packet spreading if we investigate
how the velocity distribution changes with time.  In nonrelativistic theory the velocity
distribution remains shape invariant and only the position of the center changes.  The velocity
distribution must narrow as the velocity goes to c and the effective acceleration decreases.  As
t increases, the velocity distribution approaches a peak at c with zero (velocity) variance.
Since spatial spreading is a direct consequence of a the dispersion in velocities, it follows that
a reduction in the velocity variance should signify a decrease in spreading.  It is important to
note here that the zero width in velocity accompanied with a finite width in real space does not
violate any quantum uncertainty relation.  The product of the two uncertainties D DÇx x  has no
positive lower bound.  The usual uncertainty product Dpx Dx, however, grows as a function
of time as the canonical momentum is conserved under the time-evolution.
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