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Atomic Physics

• Classical physics (Newtonian physics) – development of 
physics prior to around 1900

• Classical physics was generally concerned with 
macrocosm – the description & explanation of large-
scale phenomena 
– cannon balls, planets, wave motion, sound, optics, 

electromagnetism

• Modern physics (after about 1900) – concerned with the 
microscopic world – microcosm – the subatomic world is 
difficult to describe with classical physics 

• This chapter deals with only a part of modern physics 
called Atomic Physics – dealing with electrons in the 
atom.

Audio Link

http://www2.phy.ilstu.edu/~bkc/phy102/atoms.mp3


Early Concepts of the Atom

• Greek Philosophers (400 B.C.) debated whether 
matter was continuous or discrete, but could 
prove neither.
– Continuous – could be divided indefinitely
– Discrete – ultimate indivisible particle
– Most (including Aristotle) agreed with the continuous 

theory.

• The continuous model of matter prevailed for 
2200 years, until 1807.
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Dalton’s Model – 
“The Billiard Ball Model”

• In 1807 John Dalton presented evidence that 
matter was discrete and must exist as particles.

• Dalton’s major hypothesis stated that:
• Each chemical element is composed of small 

indivisible particles called atoms, 
– identical for each element but different from atoms of 

other elements

• Essentially these particles are featureless 
spheres of uniform density.
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Dalton’s Model

• Dalton’s 1807 “billiard 
ball model” 
pictured the atom as a 
tiny indivisible, 
uniformly dense, solid 
sphere.
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Thomson – “Plum Pudding Model”

• In 1903 J.J. Thomson discovered the electron.
• Further experiments by Thomson and others 

showed that an electron has a mass of 9.11 x 
10-31 kg and a charge of –1.60 x 10-19 C.

• Thomson produced ’rays’ using several different 
gas types in cathode-ray tubes.
– He noted that these rays were deflected by electric 

and magnetic fields.

• Thomson concluded that this ray consisted of 
negative particles (now called electrons.)
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Thomson – “Plum 
Pudding Model” (cont.)

• Identical electrons were produced no matter 
what gas was in the tube.

• Therefore he concluded that atoms of all types 
contained ’electrons.’

• Since atoms as a whole are electrically neutral, 
some other part of the atom must be positive.

• Thomson concluded that the electrons were 
stuck randomly in an otherwise homogeneous 
mass of positively charged “pudding.”
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Thompson’s Model

• Thomson’s 1903 
“plum pudding 
model” 
conceived the 
atom as a sphere 
of positive charge 
in which 
negatively 
charged electrons 
were embedded.
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Ernest Rutherford’s Model

• In 1911 Rutherford discovered that 99.97% of 
the mass of an atom was concentrated in a tiny 
core, or nucleus. 

• Rutherford’s model envisioned the electrons as 
circulating in some way around a positively 
charged core.
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Rutherford’s Model

• Rutherford’s 1911 
“nuclear model” 
envisioned the 
atom as having a 
dense center of 
positive charge 
(the nucleus) 
around which the 
electrons orbited.
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Evolution of the 
Atomic Models 1807 - 1911
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Classical Wave Theory of Light

• Scientists have known for many centuries that 
very hot (or incandescent) solids emit visible 
light
– Iron may become “red” hot or even “white” hot, with 

increasing temperature
– The light that common light bulbs give off is due to 

the incandescence of the tungsten filament 

• This increase in emitted light frequency is 
expected because as the temperature increases 
the greater the electron vibrations and ∴ the 
higher the frequency of the emitted radiation
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Red-Hot Steel

• The radiation 
component of 
maximum intensity 
determines a hot 
solid’s color.
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Thermal Radiation

• As the 
temperature 
increases the 
peak of maximum 
intensity shifts to 
higher frequency 
– it goes from red 
to orange to 
white hot.  Wave 
theory correctly 
predicts this.
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Classical Wave Theory

• According to 
classical wave 
theory, I α f 2.  This 
means that I 
should increase 
rapidly 
(exponentially) as 
f  increases.

• This is NOT what 
is actually 
observed.
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The Ultraviolet Catastrophe

• Since classical wave could not explain why the 
relationship I α f 2 is not true, this dilemma was 
coined the “ultraviolet catastrophe”
– “Ultraviolet” because the relationship broke down at high 

frequencies.
– And “catastrophe” because the predicted energy intensity fell 

well short of expectations.

• The problem was resolved in 1900 by Max 
Planck, a German physicist
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Max Planck (1858-1947)

• In 1900 Planck introduced the idea of a quantum 
– an oscillating electron can only have discrete, 
or specific amounts of energy

• Planck also said that this amount of energy (E) 
depends on its frequency ( f )

• Energy = Planck’s constant x frequency (E = hf )
• This concept by Planck took the first step toward 

quantum physics
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Quantum Theory

• Planck’s hypothesis correctly accounted for the 
observed intensity with respect to the frequency 
squared

• Therefore Planck introduce the idea of the 
“quantum” – a discrete amount of energy 
– Like a “packet” of energy

• Similar to the potential energy of a person on a 
staircase – they can only have specific potential-
energy values, determined by the height of each 
stair
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Concept of Quantized Energy
four specific potential energy values

Continuous Energy
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Quantized Energy



Photoelectric Effect

• Scientists noticed that certain metals emitted 
electrons when exposed to light– The 
photoelectric effect 

• This direct conversion of light into electrical 
energy is the basis for photocells
– Automatic door openers, light meters, solar energy 

applications

• Once again classical wave theory could not 
explain the photoelectric effect
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Photoelectric Effect Solved by 
Einstein using Planck’s Hypothesis

• In classical wave theory it should take an 
appreciable amount of time to cause an electron 
to be emitted

• But … electrons flow is almost immediate when 
exposed to light

• Thereby indicating that light consists of 
“particles” or “packets” of energy

• Einstein called these packets of energy 
“photons”
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Wave Model  – continuous flow of energy 
Quantum Model – packets of energy
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Photoelectric Effect

• In addition, it was shown that the higher the 
frequency the greater the energy
– For example, blue light has a higher frequency than 

red light and therefore have more energy than 
photons of red light.

• In the following two examples you will see that 
Planck’s Equation correctly predict the relative 
energy levels of red and blue light
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Determining Photon Energy
Example of how photon energy is determined

• Find the energy in joules of the photons of red 
light of frequency 5.00 x 1014 Hz (cycles/second)

• You are given:  f and h (Planck’s constant)
• Use Planck’s equation E = hf
• E = hf = (6.63 x 10-34J s)(5.00 x 1014/sec)
•  = 33.15 x 10-20 J

Section 9.2
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http://www2.phy.ilstu.edu/~bkc/phy102/bohr.mp3


Determining Photon Energy
Another example of how photon energy is determined

• Find the energy in joules of the photons of blue 
light of frequency 7.50 x 1014 Hz (cycles/second)

• You are given:  f and h (Planck’s constant)
• Use Planck’s Equation E = hf
• E = hf = (6.63 x 10-34J s)(7.50 x 1014/sec)
•  = 49.73 x 10-20 J

• ** Note the blue light has more energy than red light
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The Dual Nature of Light

• To explain various phenomena, light sometimes 
must be described as a wave and sometimes as 
a particle.

• Therefore, in a specific experiment, scientists 
use whichever model (wave or particle theory) of 
light works!!

• Apparently light is not exactly a wave or a 
particle, but has characteristics of both

• In the microscopic world our macroscopic 
analogies may not adequately fit
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 Two Types of Spectra

• Recall from chapter 7 that white light can be 
dispersed into a spectrum of colors by a prism
– Due to differences in refraction for the specific 

wavelengths

• In the late 1800’s experimental work with gas-
discharge tubes revealed two other types of 
spectra
– Line emission spectra displayed only bright spectral 

lines of certain frequencies
– Line absorption spectra displays dark lines of missing 

colors
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Continuous Spectrum of Visible Light
Light of all colors is observed
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Line Emission Spectrum for Hydrogen

• When light from a gas-discharge tube is analyzed only 
spectral lines of certain frequencies are found
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Line Absorption Spectrum for Hydrogen

• Results in dark lines (same as the bright lines of the line 
emission spectrum) of missing colors.
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Spectra & the Bohr Model

• Spectroscopists did not initially understand why 
only discrete, and characteristic wavelengths of 
light were 
– Emitted in a line emission spectrum, and
– Omitted in a line absorption spectrum

• In 1913 an explanation of the observed spectral 
line phenomena was advanced by the Danish 
physicist Niels Bohr
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Bohr and the Hydrogen Atom

• Bohr decided to study the hydrogen atom 
because it is the simplest atom 
– One single electron “orbiting” a single proton

• As most scientists before him, Bohr assumed 
that the electron revolved around the nuclear 
proton – but…

• Bohr correctly reasoned that the characteristic 
(and repeatable) line spectra were the result of a 
“quantum effect”
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Bohr and the Hydrogen Atom

• Bohr predicted that the single hydrogen electron 
would only be found in discrete orbits with 
particular radii
– Bohr’s possible electron orbits were given whole-

number designations, n = 1, 2, 3, …
– “n” is called the principal quantum number
– The lowest n-value, (n = 1) has the smallest radius
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Bohr Electron Orbits

• Each possible electron 
orbit is characterized 
by a quantum number.

• Distances from the 
nucleus are given in 
nanometers.
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Bohr and the Hydrogen Atom

• Classical atomic theory indicated that an 
accelerating electron should continuously 
radiate energy
– But this is not the case
– If an electron continuously lost energy, it would soon 

spiral into the nucleus

• Bohr once again correctly hypothesized that the 
hydrogen electron only radiates/absorbs energy 
when it makes an quantum jump or transition to 
another orbit
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Photon Emission and Absorption

• A transition to a lower 
energy level results in 
the emission of a 
photon.

• A transition to a higher 
energy level results in 
the absorption of a 
photon.
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The Bohr Model

• According to the Bohr model the “allowed orbits” 
of the hydrogen electron are called energy 
states or energy levels
– Each of these energy levels correspond to a specific 

orbit and principal quantum number

• In the hydrogen atom, the electron is normally at 
n = 1 or the ground state

• The energy levels above the ground state (n = 2, 
3, 4, …) are called excited states
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Orbits and Energy Levels of the Hydrogen Atom
Bohr theory predicts that the hydrogen 
electron can only occupy discrete radii.

• Note that the 
energy levels
are not evenly 
spaced.

Section 9.3



The Bohr Model

• If enough energy is applied, the electron will no 
longer be bound to the nucleus and the atom is 
ionized

• As a result of the mathematical development of 
Bohr’s theory, scientists are able to predict the 
radii and energies of the allowed orbits

• For hydrogen, the radius of a particular orbit can 
be expressed as
– rn = 0.053 n2 nm

• n = principal quantum number of an orbit
• r = orbit radius
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Confidence Exercise
Determining the Radius of an Orbit in a Hydrogen Atom

• Determine the radius in nm of the second orbit 
(n = 2, the first excited state) in a hydrogen atom

• Solution: 
• Use equation 9.2  rn = 0.053 n2 nm

• n = 2
• r1 = 0.053 (2)2 nm = 0.212 nm

• Same value as Table 9.1!
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Energy of a Hydrogen Electron

• The total energy of the hydrogen electron in an 
allowed orbit is given by the following equation:

• En = -13.60/n2 eV  (eV = electron volts)
– The negative sign means it is in a potential well

• The ground state energy value for the hydrogen 
electron is –13.60 eV
–  ∴ it takes 13.60 eV to ionize a hydrogen atom
–  the hydrogen electron’s binding energy is 13.60 eV

• Note that as the n increases the energy levels 
become closer together
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Problem Example
Determining the Energy of 

an Orbit in the Hydrogen Atom

• Determine the energy of an electron in the first 
orbit (n = 1, the ground state) in a hydrogen 
atom

• Solution:
• Use equation 9.3  En = -13.60/n2 eV 

• n = 1
• En = -13.60/(1)2 eV = -13.60 eV

• Same value as Table 9.1!
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Confidence Exercise
Determining the Energy of 

an Orbit in the Hydrogen Atom

• Determine the energy of an electron in the first 
orbit (n = 2, the first excited state) in a hydrogen 
atom

• Solution:
• Use equation 9.3  En = -13.60/n2 eV 

• n = 2
• En = -13.60/(2)2 eV = -3.40 eV

• Same value as Table 9.1!
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Explanation of Discrete Line Spectra

• Recall that Bohr was trying to explain the 
discrete line spectra as exhibited in the -
– Line Emission & Line Absorption spectrum
– Note that the observed and omitted spectra 

coincide!

Line Absorption Spectra

Section 9.3
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• The hydrogen line emission spectrum results 
from the emission of energy as the electron de-
excites
– Drops to a lower orbit and emits a photon

– Etotal = Eninitial 
 = Enf

  +  Ephoton

• The hydrogen line absorption spectrum results 
from the absorption of energy as the electron is 
excited
– Jumps to a higher orbit and absorbs a photon

Section 9.3
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Bohr Hypothesis
Correctly Predicts Line Spectra

• The dark lines in the hydrogen line absorption 
spectrum exactly matches up with the bright 
lines in the hydrogen line emission spectrum

• Therefore, the Bohr hypothesis correctly predicts 
that an excited hydrogen atom will emit/absorb 
light at the same discrete frequencies/amounts, 
depending upon whether the electron is being 
excited or de-excited

Section 9.3



Spectral Lines for Hydrogen

• Transitions among 
discrete energy orbit 
levels give rise to 
discrete spectral lines 
within the UV, visible, 
and IR wavelengths
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Quantum Effect

• Energy level arrangements are different for all of 
the various atoms

• Therefore every element has a characteristic 
and unique line emission and line absorption 
“fingerprints”

• In 1868 a dark line was found in the solar 
spectrum that was unknown at the time
– It was correctly concluded that this line represented a 

new element – named helium
– Later this element was indeed found on Earth

Section 9.3
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http://www2.phy.ilstu.edu/~bkc/phy102/quantum1.mp3


Molecular Spectroscopy

• Modern Physics and Chemistry actively study 
the energy levels of various atomic and 
molecular systems
– Molecular Spectroscopy is the study of the spectra 

and energy levels of molecules

• As you might expect, molecules of individual 
substances produce unique and varied spectra

• For example, the water molecule has rotational 
energy levels that are affected and changed by 
microwaves
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Microwaves 

• Electromagnetic radiation that have relatively 
low frequencies (about 1010 Hz)

Section 9.4



The Microwave Oven

• Because most foods contain moisture, their 
water molecules absorb the microwave radiation 
and gain energy
– As the water molecules gain energy, they rotate more 

rapidly, thus heating/cooking the item
– Fats and oils in the foods also preferentially gain 

energy from (are excited by) the microwaves
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The Microwave Oven

• Paper/plastic/ceramic/glass dishes are not 
directly heated by the microwaves
– But may be heated by contact with the food 

(conduction)

• The interior metal sides of the oven reflect the 
radiation and remain cool

• Do microwaves penetrate the food and heat it 
throughout? 
– Microwaves only penetrate a few centimeters and 

therefore they work better if the food is cut into small 
pieces

– Inside of food must be heated by conduction
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“Discovery” of 
Microwaves as a Cooking Tool

• In 1946 a Raytheon Corporation engineer, Percy 
Spencer, put his chocolate bar too close to a 
microwave source

• The chocolate bar melted of course, and …
• Within a year Raytheon introduced the first 

commercial microwave oven!
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X-Rays

• Accidentally discovered in 1895 by the German 
physicist Wilhelm Roentgen
– He noticed while working with a gas-discharge tube 

that a piece of fluorescent paper across the room 
was glowing

• Roentgen deduced that some unknown/unseen 
radiation from the tube was the cause
– He called this mysterious radiation “X-radiation” 

because it was unknown
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X-Ray Production

• Electrons from the cathode are accelerated 
toward the anode.  Upon interacting with the 
atoms of the anode, the atoms emit energy in 
the form of x-rays.
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Early use of X-Rays

• Within few months of 
their discovery, X-rays 
were being put to 
practical use.

• This is an X-ray of bird 
shot embedded in a 
hand.

• Unfortunately, much of 
the early use of X-rays 
was far too 
aggressive, resulting 
in later cancer.
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Lasers

• Unlike the accidental discovery of X-rays, the 
idea for the laser was initially developed from 
theory and only later built

• The word laser is an acronym for
– Light Amplification by Stimulated Emission of 

Radiation

• Most excited atoms will immediately return to 
ground state, but …

• Some substances (ruby crystals, CO2 gas, and 
others) have metastable excited states
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Photon Absorption

• An atom absorbs a photon and becomes excited 
(transition to a higher orbit)
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Spontaneous Emission

• Generally the excited atom immediately returns 
to ground state, emitting a photon
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Stimulated Emission

• Striking an excited atom with a photon of the 
same energy as initially absorbed will result in 
the emission of two photons
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Stimulated Emission – 
the Key to the Laser

a) Electrons absorb energy and 
move to higher level

b) Photon approaches and 
stimulate emission occurs

c) Stimulated emission chain 
reaction occurs
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Laser

• In a stimulated emission an excited atom is 
struck by a photon of the same energy as the 
allowed transition, and two photons are emitted

• The two photon are in phase and therefore 
constructively interfere

• The result of many stimulated emissions and 
reflections in a laser tube is a narrow, intense 
beam of laser light
– The beam consists of the same energy and 

wavelength (monochromatic)
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Laser Uses

• Very accurate measurements can be made by 
reflecting these narrow laser beams
– Distance from Earth to the Moon
– Between continents to determine rate of plate 

movement

• Communications, Medical, Industrial, Surveying, 
Photography, Engineering

• A CD player reads small dot patterns that are 
converted into electronic signals, then sound

Section 9.4



Heisenberg’s Uncertainty Principle

• In 1927 the German physicist introduced a new 
concept relating to measurement accuracy.

• Heisenberg’s Uncertainty Principle can be stated 
as:  It is impossible to know a particle’s exact 
position and velocity simultaneously.

Section 9.5

Audio Link

http://www2.phy.ilstu.edu/~bkc/phy102/quantum2.mp3


The very act of measurement may 
alter a particle’s position and velocity.

• Suppose one is interested in the exact position 
and velocity of an electron.

• At least one photon must bounce off the electron 
and come to your eye.

• The collision process between the photon and 
the electron will alter the electron’s position or 
velocity.
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Bouncing a photon off 
the electron introduces a great 

deal of measurement uncertainty
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How much does measurement 
alter the position and velocity?

• Further investigation led to the conclusion that 
several factors need to be considered in 
determining the accuracy of measurement:
– Mass of the particle (m)
– Minimum uncertainty in velocity (∆v)
– Minimum uncertainty in position (∆x)

• When these three factors are multiplied together 
they equal a very small number.
– Close to Planck’s constant (h = 6.63 10-34 J.s)
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Heisenberg’s Uncertainty Principle

• Therefore: m(∆v)(∆x) ≅ h
•  Although this principle may be philosophically 

significant, it is only of practical importance 
when dealing with particles of atomic and 
subatomic size.
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Matter Waves or de Broglie Waves

• With the development of the dual nature of light 
it became apparent that light “waves” sometime 
act like particles.

• Could the reverse be true?
• Can particles have wave properties?
• In 1925 the French physicist de Broglie 

postulated that matter has properties of both 
waves and particles.
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De Broglie’s Hypothesis

• Any moving particle has a wave associated with 
it whose wavelength is given by the following 
formula

•  λ = h/mv
•  λ = wavelength of the moving particle
•  m = mass of the moving particle
•  v = speed of the moving particle
•  h = Planck’s constant (6.63 x 10-34 J.s)
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de Broglie Waves

• The waves associated with moving particles are 
called matter waves or de Broglie waves.

• Note in de Broglie’s equation (λ = h/mv) the 
wavelength (λ) is inversely proportional to the 
mass of the particle (m)

• Therefore the longest wavelengths are 
associated with particles of very small mass.

• Also note that since h is so small, the resulting 
wavelengths of matter are also quite small.
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Finding the de Broglie Wavelength
Exercise Example

• Find the de Broglie wavelength for an electron 
(m = 9.11 x 10-31 kg) moving at 7.30 x 105 m/s.

• Use de Broglie equation:  λ = h/mv
• We are given h, m, & v

=λ
6.63 x 10-34 Js

(9.11 x 10-31 kg)(7.30 x 105 m/s)
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Finding the de Broglie Wavelength
Exercise Example (cont.)

λ = 1.0 x 10-9m  = 1.0 nm (nanometer)

This wavelength is only several times larger than the 
diameter of the average atom, therefore significant 
for an electron.

=λ
6.63 x 10-34 kg m2s/s2

(9.11 x 10-31 kg)(7.30 x 105 m/s)
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Finding the de Broglie Wavelength
Confidence Exercise

• Find the de Broglie wavelength for a 1000 kg car 
traveling at 25 m/s

• Use de Broglie equation:  λ = h/mv
• We are given h, m, & v

λ = 2.65 x 10–38 m = 2.65 x 10-29 nm

A very short wavelength!

=λ 6.63 x 10-34 Js

(1000 kg)(25 m/s)
= 6.63 x 10-34 kg m2s/s2

(1000 kg)(25 m/s)
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de Broglie’s 
Hypothesis – Early Skepticism

• In 1927 two U.S. scientists, Davisson and 
Germer, experimentally verified that particles 
have wave characteristics.

• These two scientists showed that a bean of 
electrons (particles) exhibits a diffraction pattern 
(a wave property.)

• Recall Section 7.4 – appreciable diffraction only 
occurs when a wave passes through a slit of 
approximately the same width as the wavelength
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de Broglie’s 
Hypothesis – Verification

• Recall from our Exercise Example that an 
electron would be expected to have a λ ≅ 1 nm.

• Slits in the range of 1 nm cannot be 
manufactured

• BUT … nature has already provided us with 
suitably small “slits” in the form of mineral crystal 
lattices.

• By definition the atoms in mineral crystals are 
arranged in an orderly and repeating pattern.
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de Broglie’s 
Hypothesis – Verification

• The orderly rows within a crystal lattice provided 
the extremely small slits needed (in the range of 
1 nm.)

• Davisson and Germer photographed two 
diffraction patterns.
– One pattern was made with X-rays (waves) and one 

with electrons (particles.)

• The two diffraction patterns are remarkably 
similar.
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Similar Diffraction Patterns
Both patterns indicate wave-like properties

X-Ray pattern

Section 9.6

Diffraction pattern 
of electrons



Dual Nature of Matter

• Electron diffraction demonstrates that moving 
matter not only has particle characteristics, but 
also wave characteristics

• BUT …
• The wave nature of matter only becomes of 

practical importance with extremely small 
particles such as electrons and atoms.
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Electron Microscope

• The electron microscope is based on the 
principle of matter waves.

• This device uses a beam of electrons to view 
objects.

• Recall that the wavelength of an electron is in 
the order of 1 nm, whereas the wavelength of 
visible light ranges from 400 – 700 nm
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Electron Microscope

• The amount of fuzziness of an image is directly 
proportional to the wavelength used to view it

• therefore …
• the electron microscope is capable of much finer 

detail and greater magnification than a 
microscope using visible light.
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Electron Cloud Model of an Atom

• Recall that Bohr chose to analyze the hydrogen 
atom, because it is the simplest atom

• It is increasingly difficult to analyze atoms with 
more that one electron, due to the myriad of 
possible electrical interactions

• In large atoms, the electrons in the outer orbits 
are also partially shielded from the attractive 
forces of the nucleus

Section 9.7
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http://www2.phy.ilstu.edu/~bkc/phy102/schrod.mp3


Electron Cloud Model of an Atom

• Although Bohr’s theory was very successful in 
explaining the hydrogen atom …

• This same theory did not give correct results 
when applied to multielectron atoms

• Bohr was also unable to explain why the 
electron energy levels were quantized

• Additionally, Bohr was unable to explain why the 
electron did not radiate energy as it traveled in 
its orbit
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Bohr’s Theory – Better Model Needed

• With the discovery of the dual natures of both 
waves and particles …

• A new kind of physics was developed, called 
quantum mechanics or wave mechanics
– Developed in the 1920’s and 1930’s as a synthesis of 

wave and quantum ideas

• Quantum mechanisms also integrated 
Heisenberg’s uncertainty principle
– The concept of probability replaced the views of 

classical mechanics in describing electron movement
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Quantum Mechanics

• In 1926, the Austrian physicist Erwin 
Schrödinger presented a new mathematical 
equation applying de Broglie’s matter waves.

• Schrödinger’s equation was basically a 
formulation of the conservation of energy

• The simplified form of this equation is …
• (Ek + Ep)Ψ = EΨ

– Ek, Ep, and E are kinetic, potential, and total energies, 
respectively

–  Ψ = wave function
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Quantum Mechanical 
Model or Electron Cloud Model

• Schrödinger’s model focuses on the wave 
nature of the electron and treats it as a standing 
wave in a circular orbit

• Permissible orbits must have a circumference 
that will accommodate a whole number of 
electron wavelengths (λ)

• If the circumference will not accommodate a 
whole number λ, then this orbit is not ’probable’ 
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The Electron as a Standing Wave

• For the electron wave to be stable, the 
circumference of the orbit must be a whole 
number of wavelengths
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Wave Function & Probability

• Mathematically, the wave function (Ψ ) 
represents the wave associated with a particle

• For the hydrogen atom it was found that the 
equation r2Ψ 2 represents …
– The probability of the hydrogen electron being a 

certain distance r from the nucleus

• A plot of r2Ψ 2 versus r for the hydrogen electron 
shows that the most probable radius for the 
hydrogen electron is r = 0.053nm
– Same value as Bohr predicted in 1913!
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r2Ψ 2 (Probability) versus r (Radius)
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Concept of the Electron Cloud

• Although the hydrogen electron may be found at 
a radii other than 0.053 nm – the probability is 
lower

• Therefore, when viewed from a probability 
standpoint, the “electron cloud” around the 
nucleus represents the probability that the 
electron will be at that position

• The electron cloud is actually a visual 
representation of a probability distribution
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Changing Model of the Atom

• Although Bohr’s “planetary model” was brilliant 
and quite elegant it was not accurate for 
multielectron atoms

• Schrödinger’s model is highly mathematical and 
takes into account the electron’s wave nature
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Schrödinger’s 
Quantum Mechanical Model

• The quantum mechanical model only gives the 
location of the electrons in terms of probability

• But, this model enables scientists to determine 
accurately the energy of the electrons in 
multielectron atoms

• Knowing the electron’s energy is much more 
important than knowing its precise location

Section 9.7



Chapter 9 - Important Equations

• E = hf  Photon Energy (h= 6.63 x 10-34 Js)
• rn = 0.053 n2 nm Hydrogen Electron Orbit Radii

• En = (-13.60/n2) eV  Hydrogen Electron Energy

• Ephoton = Eni
 – Enf 

Photon Energy for Transition

•  λ = h/mv  de Broglie Wavelength

Review
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