Contrasting Cookbook with Inquiry-Oriented Labs

By Carl J. Wenning, Coordinator Physics Teacher Education Program Illinois State University Normal, IL 61790-4560 Copyright 2004 Carl J. Wenning wenning@phy.ilstu.edu

(Draft Document: Last updated 10/04/2004)

Major differences between traditional cookbook and authentic inquiry-oriented lab activities.

Cookbook Labs:	Inquiry Labs:
are driven with step-by-step instructions requiring minimum intellectual involvement thereby promoting robotic, rule-conforming behaviors.	are driven by questions requiring ongoing intellectual engagement requiring higher-order thinking skills making for independent thought and action.
focus student activities on verifying information previously communicated in class thereby moving from abstract toward concrete.	Focus student activities on observation to discover new concepts, principles, or empirical relationships thereby moving from concrete toward abstract.
assume students will learn the nature of the scientific process by "experience" or implicitly; students execute imposed experimental designs; students are told which variables to hold constant, which to vary, which are independent, and which dependent.	promote student understanding of the nature of the scientific process; have students create their own controlled experimental designs; students independently identify, distinguish, and control pertinent independent and dependent variables.
rarely allow students to confront and deal with error, uncertainty, and misconceptions; student do not experience blind alleys or dead ends; shows the work of science to be an unrealistic linear process.	allows for students to learn from their mistakes and missteps; provides time and opportunity for students to recover from mistakes; show the work of science to be recursive and self-correcting.
require minimal intellectual engagement, and fail to promote the development of conceptual understanding of propositional and procedural knowledge.	require active intellectual engagement, and promote the development of conceptual understanding of propositional and procedural knowledge.
leave students with little understanding of the authentic nature of scientific endeavor.	approximate the authentic processes of science.

Detailed differences between traditional cookbook and authentic inquiry-oriented lab activities.*

Traditional Cookbook Labs	Authentic Inquiry-Oriented Labs
Based on detailed set of instructions.	Based primarily on guiding questions.
Students follow step-by-step directions to conduct	Students develop own experimental design.
experiment.	
Questions, if present, tend to be leading – asking	Many questions included in guidelines; questions are
students to confirm an observation or make a	unbiased – asking students to merely report or draw own
calculation.	conclusions from evidence.
Require minimum intellectual involvement.	Require ongoing intellectual engagement.
Lab strongly oriented toward gathering and	Lab strongly oriented toward developing a strong
interpreting numerical data.	conceptual understanding.
Student activity focuses on verifying information	Student activity focuses on discovering new concepts,
previously communicated in class.	principles, or empirical relationships.
Confirmatory – follow class presentation of material.	Discovery – serve to lead subsequent class discussion.
Generally little communication, and what exists tends	Discussion driven by a series of intellectually engaging
to be one way – from teacher to student.	questions. – much student-to-student interaction.
Rarely incorporates learning cycles (observation,	Engages one or more complete learning cycles.
generalization, application).	

Studente provided date tables with encoified ranges	Students determine what type of data and how much of it
Students provided data tables with specified ranges	Students determine what type of data and now much of it
for specific types of data.	to collect, and now to concentrate data collection.
lelis student what data to collect.	Leaves it up to the students to determine what data to
	collect.
Students do not design experiment.	Students create own experimental design.
Students communicate results only to course	Students communicate and defend results to other
instructor through lab reports.	participants in the lab session.
Emphasis on completing task.	Emphasis on achieving conceptual and scientific
	understanding using empirical data.
Students generally do not provide explanations, rather	Students asked to provide explanations adhering to rules
to verify	of evidence
Students generally do not predict, or predictions	Students asked to generate predictions based upon
based upon known rules or laws	deductive processes
Studente generally de net une industive processo	Studente processes.
Students generally do not use inductive processes.	Students asked to generate principles on the basis of
	inductive processes.
Student questioning not encouraged or actively	Students, ideally, encouraged to ask questions and find
discouraged.	answers to identified problems.
Students are told which variables to hold constant,	Students identify, distinguish, and properly control
and which to vary, which are independent and which	pertinent independent and dependent variables.
dependent.	
Students provided with a fixed instrumentation set up.	Students provided with a variety of technology and
	instrumentation but no fixed set up
Very little interaction between lab instructor and	l arge amounts of question-drive interaction between lab
students	instructor and students
Students.	Studente identify problems to solved based on
problem or problems.	observations of unusual phenomena.
Students told precisely how to analyze and interpret	Students use their own approaches to analyzing and
data.	interpreting data.
Promotes dependency.	Promotes independence of thought and action.
Employs lower-order thinking skills.	Promotes higher-order thinking skills.
Promotes rule-conforming behaviors.	Promotes rule-creating behaviors.
Task often seen as boring.	Task generally seen as engaging.
Focus on piecemeal understanding.	Focus on holistic understanding.
Focus on completing tasks.	Focus on learning the content and procedures of science.
Less time on task as students/teaching assistant often	More time on task as there is a very brief introduction and
spend lots of time going over the instructions	students create their own instructional design
Students tend to report "just the facts "	Inquiry questions form basis of lab report
Sudenis lend to report just the facts.	Inquity questions form basis of lab report.
Experiment unlike the real processes of science.	Lab approximates the methods of good science
Questions to be investigated decided by the teacher	Questions, ideally, decided by the investigator.
What equipment to use, how to calibrate it, what data	Investigators, ideally, have access to a variety of
to collect, and how to organize data determined by	equipment and are responsible for appropriate use to
teacher.	collect pertinent data.
Linear process that does not normally allow for	Recursive process that allows for repetition and revision of
repetition or for advising an experiment.	experimentation.
Conclusion known ahead of time.	Approach uses empirical results to draw conclusion.
Restrictive, mechanical, recipe-following, rule-	Open-ended, dynamic, procedure-inventing, rule-creating
conforming behaviors.	behaviors.
Rarely requires familiarity with concept or principle	Requires students to become familiar with the concept or
being investigated	principle being investigated or accounted for
Discourages development of separatual	Dramates development of concentual understanding of
understanding of propositional and procedured	propositional and procedural traculation a processivity
understanding of propositional and procedural	propositional and procedural knowledge – a prerequisite
knowledge.	for conducting a lab experiment.
I ends to emphasize the quantitative aspects of a	Includes an emphasis on conceptual and qualitative
physical phenomenon to the exclusion of conceptual	analysis of physical phenomena.
and qualitative understanding.	
Moves from abstract toward concrete.	Moves from concrete toward abstract.
Assumes understanding.	Constructs meaning.

* There is a degree of redundancy among the listed differences in this table. In addition, no given lab of a particular type will feature all of the listed attributes. No one lab can be said to be "purely cookbook" or "purely inquiry."