Problem-Solving Labs

Concept developed by the
University of Minnesota
Physics Education Research Group
Different Lab Types

□ "Cookbook" Labs	
-Verificational	
-Theory base provided	
 Plenty of direction provided 	
□ Problem-Solving Labs	
 Cycle of prediction-experimentation-verification- 	
explanation	
-Fewer directions provided	
What goals are addressed	
in these labs?	
□ Confront preconceptions.	
□ Practice problem-solving skills.	
□ Learn how to use equipment.	
□ Observe an event that does not have an easy	
explanation to realize new knowledge is needed.	
□ Gain an appreciation for the difficulty and joy of	
performing an experiment.	
□ Experience what real scientists do.	
□ Learn physics by doing something other than reading	1 9
sitting and listening.	
Why this style of lab?	
□ "Cookbook" labs have little value in helping	
students attain the goals.	
☐ Hands-on instruction is a powerful means of	

overcoming preconceptions. □ Allows teacher opportunity to determine student difficulties. How can I make students like and value labs? ☐ If instructors see labs as "busy work," so will students. □ Problem-solving labs remove the busy work component. ☐ This style of lab removes the "take the data and run" approach. □ Create and use labs with real-world applications. Why have students work in groups? □ Group problem solving is effective. □ Groups rarely get "stuck" due to lack of resources. □ Students learn from mistakes. □ Students get practice explaining. □ Students bring up their preconceptions. □ Labs make instruction more manageable from the perspective of the instructor. Why are there so many problems in each lab? ☐ The focus of the lab is not to get the problem 44done,39 □ Additional problems add flexibility. □ Some groups may need to be challenged.

□ Variety helps avoid boredom.
Why don't the lab instructions give
the necessary theory?
□ Labs are an integral part of an entire course.
□ Theory is available in a textbook.
□ Labs without theory promote student reading and
understanding of the textbook.
□ Doing the theory behind the lab problem helps
students to understand the lab project.
What is the reason for giving minimal
lab instructions?
☐ The primary reason is to help students learn
physics better.
☐ Good problem solving requires informed decision making.
☐ Students gain experience in analytical practice.
☐ Students are allowed to learn from mistakes.
Why should students
write up lab problems?
Some students will leave labs with same
preconceptions they entered with, or will
generate new preconceptions.
□ Reading lab reports gives instructor valuable
information about students.
☐ This in turn helps to redirect teaching.
Students need experience with technical writing
and other forms of communication.

Grading Lab Reports

- □ Not every student has to have every part of the lab report complete.
- □ Up to six points are awarded for lab report.
- ☐ Bonus points are awarded if the group as a whole does well.