\qquad
Date \qquad Pd \qquad

UNIT II: Worksheet 3

1. Robin, roller skating down a marked sidewalk, was observed to be at the following positions at the times listed below:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	10.0
1.0	12.0
2.0	14.0
5.0	20.0
8.0	26.0
10.0	30.0

a. Plot a position vs. time graph for the skater.
b. How far from the starting point was he at $\mathrm{t}=6 \mathrm{~s}$? How do you know?
c. Write a mathematical model to describe the curve in (a).
d. Was his speed constant over the entire interval? How do you know?
2. The following data were obtained for a second trial:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	4.0
2.0	10.0
4.0	16.0
6.0	22.0
8.0	28.0
10.0	34.0

a. Plot the position vs. time graph for the skater.
b. How far from the starting point was he at $\mathrm{t}=5 \mathrm{~s}$? How do you know?
c. Was his speed constant? If so, what was it?
d. In the first trial the skater was further along at 2 s than he was in the second trial. Does this mean that he was going faster? Explain your answer.
3. Suppose now that our skater was observed in a third trial. The following data were obtained:

$\mathrm{t}(\mathrm{s})$	$\mathrm{x}(\mathrm{m})$
0.0	0.0
2.0	6.0
4.0	12.0
6.0	12.0
8.0	8.0
10.0	4.0
12.0	0.0

a. Plot the position vs. time graph for the skater.
b. What do you think is happening during the time interval: $t=4 s$ to $t=6 s$? How do you know?
c. What do you think is happening during the time interval: $t=6 s$ to $t=12 s$? How do you know?
d. Determine the skater's average speed from $t=0 s$ to $t=12 s$.
e. Determine the skater's average velocity from $t=0$ s to $t=12 \mathrm{~s}$.

