Solar System Hoppers

Teacher Information

Background Information

Students will learn about the Solar System while practicing communication skills.

Materials

- clipboard for each student
- pencils
- copies of map and Avaílab̧e Destínations sheet for each student
- rulers

Procedure

1. Students should sit back to back with object info sheet and map on clipboard.
2. Identify one student as the Tour Guide, the other as the Visitor.
3. Starting at Earth, the Tour Guide should prepare a tour for their partner by drawing 5 lines, connecting 6 celestial objects together (Earth is the first.)
4. The Tour Guide will begin the tour by directing their partner to the first stop using only a single description from the Available Destinations sheet. (Example: "Our next stop has a diameter of $2,300 \mathrm{~km}$." [Pluto])
5. The following rules must be followed when giving clues:
6. No celestial object may be visited more than once
7. No clue "type" may be used more than once i.e., diameter, number of moons, etc...
8. A clue can only be repeated one time
9. A path line cannot be drawn over a celestial body (For example, the tour could not move from the comet to Saturn's moon Titan; its line would cross over Saturn.)
10. If the passenger knows where to go, he can proceed to that point. If not, he must guess and make a move to any celestial body, then try to get back on course with the next hop.
11. The students can play a second round by drawing 10 lines and connecting 11 celestial objects together (Earth is always the first).

Student Sheet

Objective

The object of this activity is to learn more about the planets in our solar system while practicing communication skills.

Materials

- clipboard for each student
- pencils
- copies of map and Available Destinations sheet for each student
- rulers

Procedure

1. Students should sit back to back with object info sheet and map on clipboard.
2. Identify one student as the Tour Guide, the other as the Visitor.
3. Starting at Earth, the Tour Guide should prepare a tour for their partner by drawing 5 lines, connecting 6 celestial objects together (Earth is the first.)
4. The Tour Guide will begin the tour by directing their partner to the first stop using only a single description from the Available Destinations sheet. (Example: "Our next stop has a diameter of $2,300 \mathrm{~km}$." [Pluto])
5. The following rules must be followed when giving clues:
6. No celestial object may be visited more than once
7. No clue "type" may be used more than once i.e., diameter, number of moons, etc...
8. A clue can only be repeated one time
9. A path line cannot be drawn over a celestial body (For example, the tour could not move from the comet to Saturn's moon Titan; its line would cross over Saturn.)
10. If the passenger knows where to go, he can proceed to that point. If not, he must guess and make a move to any celestial body, then try to get back on course with the next hop.
11. The students can play a second round by drawing 10 lines and connecting 11 celestial objects together (Earth is always the first).

Points

- 10 points for each correct path (50 points possible)
- 50 points for ending at the same destination

Variations

- Make the first and final destination Earth.
- Increase the number of stops and decrease the amount of time allotted.

Pluto

Uranus

<START HERE>

Solar System Hoppers

Available Destinations

Jupiter	Mars	Mercury
Average Distance from Sun: 778.3 million km	Average distance from Sun: 227.9 million km	Average distance from Sun: 57.9 million km
Diameter: $142,984 \mathrm{~km}$	Diameter: 6,796 km	Diameter: $4,878 \mathrm{~km}$
Revolution: 11.9 years	Revolution: 687 days	Revolution: 88 days
Rotation: 9 hours 55 minutes	Rotation: 24 hours 37 minutes	Rotation: 59 days
Average Temperature: $-157{ }^{\circ} \mathrm{C}$	Temperature: -143° to $17^{\circ} \mathrm{C}$	Temperature: -173° to $427^{\circ} \mathrm{C}$
Number of Moons: 39	Number of Moons: 2	Number of Moons: 0
Neptune	Pluto	Saturn
Average distance from Sun: 4,504.3	Average distance from Sun: 5,900	Average distance from Sun: 1,429.4
million km	million km	million km
Diameter: 49,500 km	Diameter: 2300 km	Diameter: 120,530 km
Revolution: 164.9 years	Revolution: 248.8 years	Revolution: 29.5 years
Rotation: 16 hours 57 minutes	Rotation: 6 days	Rotation: 10 hours 39 minutes
Average Temperature: $-214^{\circ} \mathrm{C}$	Temperature: -210° to $-235^{\circ} \mathrm{C}$	Average Temperature: $-178{ }^{\circ} \mathrm{C}$
Number of Moons: 8	Number of Moons: 1	Number of Moons: 30
Uranus	Venus	The Sun
Average distance from Sun: 2,875	Average distance from Sun: 108.2	Distance from Earth 150 million km
million km	million km	Diameter: 1,392,000 km
Diameter: $51,118 \mathrm{~km}$	Diameter: 12,104 km	Rotation: about one month
Revolution: 84.1 years	Revolution: 225 days	Temperature: $5,500^{\circ} \mathrm{C}$
Rotation: 17 hours 8 minutes	Rotation: 243 days	Atmosphere: Mostly hydrogen
Average Temperature: $-216^{\circ} \mathrm{C}$	Average Temperature: $+462^{\circ} \mathrm{C}$	
Number of Moons: 20	Number of Moons: 0	
Comet	Asteroid Ceres	Meteoroid
Types: short-period or long-period	Discovered: January 1, 1801	Contents: metal/stone
Origination: Kuiper Belt or Oort Cloud	Distinction: First asteroid discovered	Orbits: The Sun
Contents: Ice, rock, dust, gas	Diameter: 1025 km	
Charon	Ariel	Titan
Diameter: 1,270 km	Diameter: 1,160 km	Diameter: $5,150 \mathrm{~km}$
Orbits: Pluto	Orbits: Uranus	Orbits: Saturn
Distance from Planet: 19,640 km	Distance from Planet: 191,240 km	Distance from Planet: 1,221,850 km
Discovered: 1978	Discovered: 1851	Discovered: 1655
Umbriel	Europa	Io
Diameter: 1,190 km	Diameter: 3,140 km	Diameter: $3,630 \mathrm{~km}$
Orbits: Uranus	Orbits: Jupiter	Orbits: Jupiter
Distance from Planet: 265,970 km	Distance from Planet: 670,900 km	Distance from Planet: 421,600 km
Discovered: 1851	Discovered: 1610	Discovered: 1610
Triton	Phobos	Pandora
Diameter: $2,700 \mathrm{~km}$	Diameter: 21 km	Diameter: 90 km
Orbits: Neptune	Orbits: Mars	Orbits: Saturn
Distance from Planet: 354,800 km	Distance from Planet: 9,830 km	Distance from Planet:141,700 km
Discovered: 1846	Discovered: 1877	Discovered: 1980
	Orbital Period: .7.6 hours	Orbital Period: 15 hours
Deimos	Earth's Moon	Callisto
Diameter: 12 km	Diameter: 3,476 km	Diameter: 4,800 km
Orbits: Mars	Orbits: The Earth	Orbits: Jupiter
Distance from Planet: $23,460 \mathrm{~km}$	Distance from Planet: 384,400 km	Distance from Planet:1,883,000 km
Discovered: 1877	Discovered: ?	Discovered: 1610
Orbital Period: 1 day 6 hours	Orbital Period: 27.3 days	Orbital Period: 16.69 days

If you are a tour guide:

1. You will be creating an itinerary or "travel plan" for you partner who is a space tourist. To create the tour plan, follow the steps below.
2. Beginning at planet Earth, use a pencil and a ruler to connect five additional celestial objects.
3. You cannot cross over any celestial body (planet, asteroid, etc...) without stopping at the planet
4. After you have created the steps of the tour, sit back to back with your partner.
5. A clue should sound like: "The first stop has a diameter of 1,190 kilometers."
6. You cannot repeat a clue, and you may use the same type of clue twice.
7. You will receive points for each correct stop and for ending at the same location.

If you are a traveler:

1. You must sit back to back with your partner.
2. While your partner is designing your tour, study the $\mathfrak{A v a i l a b l e ~ D e s t i n a t i o n s ~ s h e e t . ~}$
3. Listen carefully when your partner gives you a clue, it may not be repeated.
4. After you receive a clue, check the Available Destinations sheet and try to match it with a planet or moon.
5. Draw a line connecting the two locations.
6. Your partner cannot use the same type of clue twice.
7. You will receive points for each correct stop and for ending at the same location.
