
Chi-Square Test for Goodness of Fit 
(after Applied Statistics by Hinkle/Wiersma/Jurs) 

 
Scientists will often use the Chi-square (

€ 

χ 2) test to determine the goodness of fit between theoretical 
and experimental data. In this test, we compare observed values with theoretical or expected values. 
Observed values are those that the researcher obtains empirically through direct observation; theoretical 
or expected values are developed on the basis of some hypothesis. For example, in 200 flips of a coin, one 
would expect 100 heads and 100 tails. But what if 92 heads and 108 tails are observed? Would we reject 
the hypothesis that the coin is fair? Or would we attribute the difference between observed and expected 
frequencies to random fluctuation? 

Consider another example. Suppose we hypothesize that we have an unbiased six-sided die. To test 
this hypothesis, we roll the die 300 times and observe the frequency of occurrence of each of the faces. 
Because we hypothesized that the die is unbiased, we expect that the number on each face will occur 50 
times. However, suppose we observe frequencies of occurrence as follows: 

 
Face value Occurrence 

1 42 
2 55 
3 38 
4 57 
5 64 
6 44 

 
Again, what would we conclude? Is the die biased, or do we attribute the difference to random 
fluctuation? 

Consider a third example. The president of a major university hypothesizes that at least 90 percent of 
the teaching and research faculty will favor a new university policy on consulting with private and public 
agencies within the state. Thus, for a random sample of 200 faculty members, the president would expect 
0.90 x 200 = 180 to favor the new policy and 0.10 x 200 = 20 to oppose it. Suppose, however, for this 
sample, 168 faculty members favor the new policy and 32 oppose it. Is the difference between observed 
and expected frequencies sufficient to reject the president's hypothesis that 90 percent would favor the 
policy? Or would the differences be attributed to chance fluctuation? 

Lastly, consider an experimental result where, for given independent values of “X,” the following 
theoretical (expected) and experimental (observed) dependent values of Y were found: 
 
 X Ytheoretical Yexperimental  
 3.45 11.90 11.37  
 4.12 16.97 17.02  
 4.73 22.37 23.78  
 5.23 27.35 26.13  
 6.01 36.12 35.96  
 6.82 46.51 45.22  
 7.26 52.71 53.10  

 
In each of these examples, the test statistic for comparing observed and expected frequencies is 

€ 

χ 2, 
defined as follows: 

€ 

χ 2 =
(O− E)2

Ei=1

k
∑  

where 



 
O = observed value 
E = expected value 

k = number of categories, groupings, or possible outcomes 
 
The calculations of 

€ 

χ 2for each of the three examples, using the above formula, are found in Tables 1-4. 
 
TABLE 1. Calculation of 

€ 

χ 2 for the Coin-Toss Example 
 

Face O E O-E (O-E)2 (O-E)2/E 
Heads 92 100 -8 64 .64 
Tails 108 100 +8 64 .64 

Totals 200 200 0 -- 1.28 = 

€ 

χ 2 
 
TABLE 2. Calculation of 

€ 

χ 2 for the Die Example 
 

Face Value O E O-E (O-E)2 (O-E)2/E 
1 42 50 -8 64 1.28 
2 55 50 5 25 .50 
3 38 50 -12 144 2.88 
4 57 50 7 49 .98 
5 64 50 14 196 3.92 
6 44 50 -6 36 .72 

Totals 300 300 0 -- 10.28=

€ 

χ 2 
 
TABLE 3. Calculation of 

€ 

χ 2 for the Consulting-Policy Example 
 

Disposition O E O-E (O-E)2 (O-E)2/E 
Favor 168 180 -12 144 .80 

Oppose 32 20 +12 144 7.20 
Totals 200 200 0 -- 8.00=

€ 

χ 2 
 
TABLE 4. Calculation of 

€ 

χ 2 for the Experiment Example 
 

X O E O-E (O-E)2 (O-E)2/E 
3.45 11.37 11.90 -.53 .28 .02 
4.12 17.02 16.97 .05 .02 .00 
4.73 23.78 22.37 1.41 1.99 .09 
5.23 26.13 27.35 -1.22 1.49 .05 
6.01 35.96 36.12 -.16 .03 .00 
6.82 45.22 46.51 -1.29 1.66 .04 
7.26 53.10 52.71 .39 .15 .00 

Totals 212.58 213.93 -1.35 5.62 0.20 = 

€ 

χ 2 
 
 

There is a family of 

€ 

χ 2 distributions, each a function of the degrees of freedom associated with the 
number of categories in the sample data. Only a single degree of freedom (df) value is required to identify 
the specific 

€ 

χ 2distribution. Notice that all values of 

€ 

χ 2are positive, ranging from zero to infinity. 
Consider the degrees of freedom for each of the above examples. In the coin example, note that the 

expected frequencies in each of the two categories (heads or tails) are not independent. To obtain the 
expected frequency of tails (100), we need only to subtract the expected frequency of heads (100) from 
the total frequency (200), or 200 - 100 = 100. Similarly, for the example of the new consulting policy, the 
expected number of faculty members who oppose it (20) can be found by subtracting the expected 
number who support it (180) from the total number in the sample (200), or 200 – 180 = 20. Thus, given 



the expected frequency in one of the categories, the expected frequency in the other is readily determined. 
In other words, only the expected frequency in one of the two categories is free to vary; that is, there is 
only 1 degree of freedom associated with these examples. 

For the die example, there are six possible categories of outcomes: the occurrence of the six faces. 
Under the assumption that the die is fair, we would expect that the frequency of occurrence of each of the 
six faces of the die would be 50. Note again that the expected frequencies in each of these categories are 
not independent. Once the expected frequency for five of the categories is known, the expected frequency 
of the sixth category is uniquely determined, since the total frequency equals 300. Thus, only the expected 
frequencies in five of the six categories are free to vary; there are only 5 degrees of freedom associated 
with this example. 

In the last example dealing with the data from the experiment, the cross-tabulation table has 2 
columns and 7 rows. The degrees of freedom for such tables is (# rows – 1)(# columns – 1) = (6)(1) = 6 
 
The Critical Values for the 

€ 

χ 2 Distribution 
The use of the 

€ 

χ 2 distribution in hypothesis testing is analogous to the use of the t and F distributions. 
A null hypothesis is stated, a test statistic is computed, the observed value of the test statistic is compared 
to the critical value, and a decision is made whether or not to reject the null hypothesis. For the coin 
example, the null hypothesis is that the frequency of heads is equal to the frequency of tails. For the die 
example, the null hypothesis is that the frequency of occurrence of each of the six faces is the same. In 
general, it is not a requirement for the categories to have equal expected frequencies. For instance, in the 
example of the new consulting policy, the null hypothesis is that 90 percent of the faculty will support the 
new policy and 10 percent will not. 

The critical values of 

€ 

χ 2 for 1 through 30 degrees of freedom are found in Table 5. Three different 
percentile points in each distribution are given – α = .10, α = .05, and α = .01. (e.g., chances of 10%, 5%, 
and 1% respectively of rejecting the null hypothesis when it should be retained). For the coin and 
consulting-policy examples, the critical values of 

€ 

χ 2 for 1 degree of freedom, with α = .05 and α = .01, 
are 3.841 and 6.635, respectively. For the die example, the corresponding critical values of 

€ 

χ 2 for 5 
degrees of freedom are 11.070 and 15.086. Although Table 5 is sufficient for many research settings in 
the sciences, there are some situations in which the degrees of freedom associated with a 

€ 

χ 2 test are 
greater than 30. These situations are not addressed here. 

Now that we have seen the table of critical values for the 

€ 

χ 2 distribution, we can complete the 
examples. For the coin example, the null hypothesis is that the frequency of heads equals the frequency of 
tails. As we mentioned, because there are only two categories, once the expected value of the first 
category is determined, the second is uniquely determined. Thus, there is only 1 degree of freedom 
associated with this example. Assuming that the α = .05 level of significance is used in testing this null 
hypothesis, the critical value of 

€ 

χ 2 (

€ 

χCV
2 ) is 3.841 (see Table 5). Notice that, in Table 1, the calculated 

value of 

€ 

χ 2 is 1.28. Because the calculated value does not exceed the critical value, the null hypothesis 
(the coin is fair) is not rejected; the differences between observed and expected frequencies are 
attributable to chance fluctuation. That is, when the calculated value of 

€ 

χ 2 exceeds the critical value, the 
data support the belief that a significant difference exists between expected and actual values. 

For the example of the new consulting policy, the null hypothesis is that 90 percent of the faculty 
would support it and 10 percent would not. Again, because there are only two categories, there is 1 degree 
of freedom associated with the test of this hypothesis. Thus, assuming α = .05, the 

€ 

χCV
2  is 3.841. From 

Table 3, we see that the calculated value of 

€ 

χ 2 is 8.00; therefore, the null hypothesis (that there is no 
difference) is rejected. The conclusion is that the percentage of faculty supporting the new consulting 
policy is not 90. 



For the die example, the null hypothesis is that the frequency of occurrence of each of the six faces is 
the same. With six categories, there are 5 degrees of freedom associated with the test of this hypothesis; 
the 

€ 

χCV
2  for α = .05 is 11.070. Using the data from Table 2, 

€ 

χ 2 = 10.28. Because this calculated value is 
less than the critical value, the null hypothesis is retained. The conclusion is that the differences between 
the observed and expected frequencies in each of the six categories are attributable to chance fluctuation. 

For the example with the experiment, the null hypothesis is that there is no difference between 
theoretical and experimental results. With seven data pairs there are 6 degrees of freedom associated with 
the test of this hypothesis; the 

€ 

χCV
2  for α = .05 is 12.592. Because this calculated value of 

€ 

χ 2  (0.20) is 
less than the critical value (12.592), the null hypothesis is retained. The conclusion is that the differences 
between the observed and expected values in each of the seven data pairs are attributable to chance 
fluctuation. The experimental results are therefore consistent with the theoretical results to with a 95% 
chance of probability. 

 
TABLE 5. CRITICAL

€ 

χ 2 VALUES FOR UP TO 30 DEGREES OF FREEDOM 

 
df 

 
1 
2 
3 
4 
5 

 
6 
7 
8 
9 

10 
 

11 
12 
13 
14 
15 

 
16 
17 
18 
19 
20 

 
21 
22 
23 
24 
25 

 
26 
27 
28 
29 
30 

α  = .10 
 
2.706  
4.605 
6.251 
7.779 
9.236 
 
10.645 
12.017 
13.362 
14.684 
15.987 
 
17.275 
18.549 
19.812 
21.064 
22.307 
 
23.542 
24.769 
25.989 
27.204 
28.412 
 
29.615 
30.813 
32.007 
33.196 
34.382 
 
35.563 
36.741 
37.916 
39.087 
40.256 

α  = .05 
 
3.841 
5.991 
7.815 
9.488 
11.070 
 
12.592 
14.067 
15.507 
16.919 
18.307 
 
19.675 
21.026 
22.362 
23.685 
24.996 
 
26.296 
27.587 
28.869 
30.144 
31.410 
 
32.671 
33.924 
35.172 
36.415 
37.652 
 
38.885 
40.113 
41.337 
42.557 
43.773 

α  = .01 
 
6.635 
9.210 
11.345 
13.277 
15.086 
 
16.812 
18.475 
20.090 
21.666 
23.209 
 
24.725 
26.217 
27.688 
29.141 
30.578 
 
32.000 
33.409 
34.805 
36.191 
37.566 
 
38.932 
40.289 
41.638 
42.980 
44.314 
 
45.642 
46.963 
43.278 
49.558 
50.892 

 


