A transverse sinudoidal wave on a horizontal string travels to the right with a speed of $20 \mathrm{~m} / \mathrm{s}$. The wavelength of the wave is 1.5 m . A point on the string at $\mathrm{x}=0$ and $\mathrm{t}=0$ has a vertical position of 30 cm below $y=0$ and a vertical velocity of $2.5 \mathrm{~m} / \mathrm{s}$ upward. Assume the mathematical form of the wave is $y(x, t)=A \sin (k x \pm \omega t+\phi)$. Assume the usual positive directions for x and y.

1. What is the proper sign of the ωt term?
a) +
b) -
c) either is correct
d) neither is correct

Use the minus sign for waves traveling to the right (toward positive x).
2. What is the value of k ?
a) $\frac{\pi}{3} m^{-1}$
b) $\frac{2 \pi}{3} m^{-1}$
c) πm^{-1}
d) $\frac{4 \pi}{3} m^{-1}$
$k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{1.5 m}=\frac{2 \pi}{\frac{3}{2} m}=\frac{4 \pi}{3} m^{-1}$
3. What is the value of ω ?
a) $\frac{20 \pi}{3} s^{-1}$
b) $\frac{50 \pi}{3} s^{-1}$
c) $\frac{80 \pi}{3} \mathrm{~s}^{-1}$
d) $\frac{100 \pi}{3} \mathrm{~s}^{-1}$
$v=\frac{\omega}{k}$ so that $\omega=k v=\left(\frac{4 \pi}{3}\right)(20)=\frac{80 \pi}{3} s^{-1}$
4. What is the value of A ?
a) 0.128 m
b) 0.224 m
c) 0.301 m
d) 0.493 m
5. What is the value of ϕ ?
a) 1.51 rad
b) 2.84 rad
c) 3.77 rad
d) 4.61 rad

Solve 4 and 5 in reverse order. Note that since $y=A \sin [k x-\omega t+\phi]$, we can take a derivative with respect to time and get $v_{y}=-\omega A \cos [k x-\omega t+\phi]$. Now put in the information given in the statement of the problem to get $-0.3=A \sin \phi$
$2.5=-\frac{80 \pi}{3} A \cos \phi$

Manipulate the two equations to get $\tan \phi=\frac{80 \pi}{3} \frac{0.3}{2.5}$, which gives $\phi=1.472 \mathrm{rad}$. However, if you substitute this value into the first equation above, you can't get a positive value for A as required. Therefore you have to add π to get $\phi=4.61 \mathrm{rad}$. Use this value in the first equation and find $A=0.301 \mathrm{~m}$.

Possibly useful equations: $\omega=2 \pi f, f=\frac{1}{T}, k=\frac{2 \pi}{\lambda}, v=\lambda f, v=\frac{\omega}{k}$

