A transverse sinudoidal wave on a horizontal string travels to the **right** with a speed of 20 m/s. The wavelength of the wave is 1.5 m. A point on the string at x = 0 and t = 0 has a vertical position of 30 cm **below** y = 0 and a vertical velocity of 2.5 m/s **upward**. Assume the mathematical form of the wave is $y(x,t) = A\sin(kx \pm \omega t + \phi)$. Assume the usual positive directions for x and y.

- 1. What is the proper sign of the ωt term?
 - a) + b) c) either is correct d) neither is correct

Use the minus sign for waves traveling to the right (toward positive x).

2. What is the value of *k*?

a)
$$\frac{\pi}{3} m^{-1}$$
 b) $\frac{2\pi}{3} m^{-1}$ c) πm^{-1} d) $\frac{4\pi}{3} m^{-1}$
 $k = \frac{2\pi}{\lambda} = \frac{2\pi}{1.5m} = \frac{2\pi}{\frac{3}{2}m} = \frac{4\pi}{3} m^{-1}$

3. What is the value of ω ?

a)
$$\frac{20\pi}{3} s^{-1}$$
 b) $\frac{50\pi}{3} s^{-1}$ c) $\frac{80\pi}{3} s^{-1}$ d) $\frac{100\pi}{3} s^{-1}$
 $v = \frac{\omega}{k}$ so that $\omega = kv = \left(\frac{4\pi}{3}\right) (20) = \frac{80\pi}{3} s^{-1}$

- 4. What is the value of *A*?
 - a) 0.128 m b) 0.224 m c) 0.301 m d) 0.493 m
- 5. What is the value of ϕ ?
 - a) 1.51 rad b) 2.84 rad c) 3.77 rad d) 4.61 rad

Solve 4 and 5 in reverse order. Note that since $y = A\sin[kx - \omega t + \phi]$, we can take a derivative with respect to time and get $v_y = -\omega A\cos[kx - \omega t + \phi]$. Now put in the information given in the statement of the problem to get $-0.3 = A\sin\phi$ $2.5 = -\frac{80\pi}{3}A\cos\phi$ Manipulate the two equations to get $\tan \phi = \frac{80\pi}{3} \frac{0.3}{2.5}$, which gives $\phi = 1.472 \, rad$. However, if you substitute this value into the first equation above, you can't get a positive value for A as required. Therefore you have to add π to get $\phi = 4.61 \, rad$. Use this value in the first equation and find $A = 0.301 \, m$.

Possibly useful equations: $\omega = 2\pi f$, $f = \frac{1}{T}$, $k = \frac{2\pi}{\lambda}$, $v = \lambda f$, $v = \frac{\omega}{k}$