

1. If the force in cable $C A D$ is 250 N and the force in cable $D B E$ is 100 N , determine the total moment about O.

2. The applied force at A is parallel to the y axis, and the force at B is parallel to the z axis. If the magnitude of the total moment about O cannot exceed $1 \mathrm{kN} \cdot \mathrm{m}$, what is the maximum allowed value for F ?
3. The force $\vec{F}=[6 \hat{i}+8 \hat{j}+10 \hat{k}] N$
produces a moment about O of $[-14 \hat{i}+8 \hat{j}+2 \hat{k}] N \cdot m$. If the line of the force passes through a point whose x coordinate is 1 m , find the y and z coordinates of that point and the perpendicular distance d between the line of the force and O.

4. The force in chain $A B$ is 20 lbs . Find the moment produced by this force about the line of the hinge (the x-axis).

5. If the brackets along the pipe OA can withstand a maximum moment of 150 $\mathrm{lb} \cdot \mathrm{ft}$ without slipping, determine the maximum weight for the flower pot.
