
Lab 3 Arduino Capacitance Meter

Objectives:

• Build and investigate an RC discharge circuit.
• Use an Arduino to measure the voltage across a discharging capacitor as a function of

time.
• Analyze the data to extract a measured value for the capacitance.

I. Using an unpowered breadboard, your Arduino, and the components listed, construct the
circuit shown below. Try to keep the wires reasonably short.

Pin 53 is a digital pin, which we will configure as an output, capable of giving either +5 V
(HIGH) or 0 V (LOW). Pin A15 is one of the analog input pins and is capable of measuring
analog voltages (0 – 5V).

II. Now we need to construct the code to run the experiment. In pseudo-code, it might look like
this:

1. Declare variables
2. void setup() – This block tells the Arduino to configure pin 53 as an output and

begins the serial connection for displaying text on the serial monitor
3. void loop() – This block does all the work, and repeats endlessly until we remove

power from the Arduino. It needs to:
a. Set pin 53 to HIGH to charge the capacitor (perhaps with a small delay to let it

fully charge.
b. Set pin 53 to LOW to begin the discharge
c. Begin taking time measurements and voltage measurements, storing the values in

arrays.
d. Analyze the data to extract the value of the capacitance.
e. Print the results to the serial monitor.

Here are some helpful points for each of the elements of the pseudo-code above:

1. Use these keywords to declare variables of the given type.

Keyword Type
int Integer, from –32767 to 32767
float Floating point real number, single precision
double Same as float on our board
long int Long integer, +/– 2,147,483,647
unsigned long int Non-negative long integer

For more data types and other useful programming info, check the Arduino language reference at
https://www.arduino.cc/en/Reference/HomePage

2. For our little program, setup() only needs to do two things – check out Serial.begin() and
pinMode() in the language reference. For Serial.begin(), the only parameter is the speed, so
choose at least 9600.

3. Here some hints for each element in loop():

a) Use digitalWrite() to set pin 53 to HIGH. Use delay(n) to set a delay of n
milliseconds.

b) Use digitalWrite() again.
c) Use millis() to get the current time in ms (the clock rolls over, so it’s not connected to

true clock time, but successive measurements will give the correct time difference) and
analogRead() to get the voltage on pin A15. This has to be done in a loop (try a for
loop), so you have to pick the total number of points to take and the approximate time
spacing between points (use delay() to set the approximate time delay between points).
You can use the index of the loop as the index for your voltage and time arrays. Arrays
in C start at index 0.

d) Now you have to convert the voltage measurements from integer values (0 – 1023) to real
voltage values. That range of integers corresponds to the real voltage range 0 – 5 V.
Then take the natural log of the real voltage values using log(). Just remember that
log(0) is undefined. A plot of the natural log values (y-axis) vs the time values (x-axis)
should yield a straight line with slope equal to –1/RC. To find the best fit slope, you can

use this formula: m =
N xiyi − xi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

yi
i=1

N

∑⎛⎝⎜
⎞
⎠⎟i=1

N

∑

N xi
2 − xi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

i=1

N

∑
. N is the number of data pairs. To

find the error in this number due to the scatter in the data, use these formulas:

R =
N xiyi − xi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

yi
i=1

N

∑⎛⎝⎜
⎞
⎠⎟i=1

N

∑

N xi
2 − xi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

i=1

N

∑ N yi
2 − yi

i=1

N

∑⎛⎝⎜
⎞
⎠⎟

2

i=1

N

∑
 and σ m =

m
R

1− R2

N − 2

e) Look at Serial.print() and Serial.println() to print your results (and any debugging
notes you need) to the serial monitor.

