1 Features

- Internally Trimmed Offset Voltage: 0.5 mV (Max)
- Input Offset Voltage Drift: 7 μV/°C (Typ)
- Low Input Bias Current: 50 pA
- Low Input Noise Current: 0.01 pA/√Hz
- Wide Gain Bandwidth: 3 MHz (Min)
- High Slew Rate: 10 V/μs (Min)
- Low Supply Current: 1.8 mA
- High Input Impedance: 10^{12} Ω
- Low Total Harmonic Distortion: ≤0.02%
- Low 1/f Noise Corner: 50 Hz
- Fast Settling Time to 0.01%: 2 μs

2 Applications

- High Speed Integrators
- Fast D/A Converters
- Sample and Hold Circuits

3 Description

These devices are low-cost, high-speed, JFET input operational amplifiers with very low input offset voltage and input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

Device Information

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>PACKAGE</th>
<th>BODY SIZE (NOM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF411-N</td>
<td>8-Pin PDIP</td>
<td>9.59mm×6.35mm</td>
</tr>
</tbody>
</table>

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Inverting Amplifier with V_{OS} Adjust
Table of Contents

1 Features .. 1
2 Applications .. 1
3 Description .. 1
4 Revision History ... 2
5 Pin Configuration and Functions 3
6 Specifications ... 4
 6.1 Absolute Maximum Ratings 4
 6.2 Handling Ratings .. 4
 6.3 Recommended Operating Conditions 4
 6.4 Thermal Information ... 4
 6.5 DC Electrical Characteristics 5
 6.6 AC Electrical Characteristics 5
 6.7 Typical Performance Characteristics 6
 6.8 Pulse Response (R_L=2 kΩ, C_L=10 pF) 10
7 Detailed Description ... 11
 7.1 Overview .. 11
7.2 Functional Block Diagram .. 11
7.3 Feature Description ... 11
7.4 Device Functional Modes .. 11
8 Application and Implementation 13
 8.1 Application Information .. 13
 8.2 Typical Applications ... 13
9 Power Supply Recommendations 16
10 Layout ... 16
 10.1 Layout Guidelines .. 16
 10.2 Layout Example .. 16
11 Device and Documentation Support 17
 11.1 Trademarks ... 17
 11.2 Electrostatic Discharge Caution 17
 11.3 Glossary .. 17
12 Mechanical, Packaging, and Orderable Information 17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (March 2013) to Revision E

- Added Handling Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ... 1
- Changed Input Offset Voltage Drift Feature from Max to Typ. ... 1
- Deleted the word “specified” in first sentence of Description paragraph ... 1
- Deleted note ... 5
- Deleted ΔV_{OS}/ΔT Max specification for LM411A ... 5
- Deleted ΔV_{OS}/ΔT Max specification for LM411 ... 5

Changes from Revision C (March 2013) to Revision D

- Changed layout of National Data Sheet to TI format ... 12
5 Pin Configuration and Functions

NOTE: See Package Number NEV0008A
NOTE: Pin 4 connected to case.

<table>
<thead>
<tr>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>Inverting Input</td>
<td>2</td>
<td>I</td>
</tr>
<tr>
<td>Non-Inverting Input</td>
<td>3</td>
<td>I</td>
</tr>
<tr>
<td>$V-$</td>
<td>4</td>
<td>P</td>
</tr>
<tr>
<td>Balance</td>
<td>5</td>
<td>I</td>
</tr>
<tr>
<td>Output</td>
<td>6</td>
<td>O</td>
</tr>
<tr>
<td>$V+$</td>
<td>7</td>
<td>P</td>
</tr>
<tr>
<td>NC</td>
<td>8</td>
<td>NC</td>
</tr>
</tbody>
</table>

NOTE: See Package Number P0008E
6 Specifications

6.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>UNIT</th>
<th>LF411A MIN</th>
<th>LF411A MAX</th>
<th>LF411 MIN</th>
<th>LF411 MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>±22</td>
<td>±18</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±38</td>
<td>±30</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>±19</td>
<td>±15</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Output Short Circuit Duration</td>
<td>Continuous</td>
<td>Continuous</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT</th>
<th>TO Package MIN</th>
<th>TO Package MAX</th>
<th>PDIP Package MIN</th>
<th>PDIP Package MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>670</td>
<td>670</td>
<td>mW</td>
<td>mW</td>
<td></td>
</tr>
<tr>
<td>T_{j,\text{max}}</td>
<td>150</td>
<td>115</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>See (5)</td>
<td>See (5)</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10 s)</td>
<td>260</td>
<td>260</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
</tbody>
</table>

(1) "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits.
(2) Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.
(3) For operating at elevated temperature, these devices must be derated based on a thermal resistance of θ_{JA}.
(4) Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside specified limits.
(5) These devices are available in both the commercial temperature range 0°C ≤ T_{A} ≤ 70°C and the military temperature range −55°C ≤ T_{A} ≤ 125°C. The temperature range is designated by the position just before the package type in the device number. A “C” indicates the commercial temperature range and an “M” indicates the military temperature range. The military temperature range is available in the TO package only.

6.2 Handling Ratings

<table>
<thead>
<tr>
<th>UNIT</th>
<th>MIN</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{stg} Storage temperature range</td>
<td>−65</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage LF411A</td>
<td>±20</td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Voltage LF411</td>
<td>±15</td>
<td></td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Thermal Information

<table>
<thead>
<tr>
<th>UNIT</th>
<th>TO</th>
<th>PDIP</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_{JA} Junction-to-ambient thermal resistance</td>
<td>162</td>
<td>120</td>
<td>°C/W</td>
</tr>
<tr>
<td>θ_{JC} Junction-to-case (top) thermal resistance</td>
<td>65</td>
<td>20</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
6.5 DC Electrical Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>LF411A</th>
<th>LF411</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>V_{OS} Input Offset Voltage</td>
<td>R_S=10 kΩ, T_A=25°C</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>ΔV_{OS}/ΔT Average TC of Input Offset Voltage</td>
<td>R_S=10 kΩ</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>I_{OS} Input Offset Current</td>
<td>V_S=±15V (2) (3)</td>
<td>25</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>T_A=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_A=70°C</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>T_A=125°C</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>I_{B} Input Bias Current</td>
<td>V_S=±15V (2) (3)</td>
<td>50</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>T_A=25°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T_A=70°C</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>T_A=125°C</td>
<td>50</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>R_{IN} Input Resistance</td>
<td>T_A=25°C</td>
<td>10^12</td>
<td></td>
<td>10^12</td>
</tr>
<tr>
<td>A_{VOL} Large Signal Voltage Gain</td>
<td>V_S=±15V, V_O=±10V, R_L=2k, T_A=25°C</td>
<td>50</td>
<td>200</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Over Temperature</td>
<td>25</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>V_{O} Output Voltage Swing</td>
<td>V_S=±15V, R_L=10k</td>
<td>±12</td>
<td>±13.5</td>
<td>±12</td>
</tr>
<tr>
<td>V_{CM} Input Common-Mode Voltage Range</td>
<td></td>
<td>±16</td>
<td>+19.5</td>
<td>±11</td>
</tr>
<tr>
<td>CMRR Common-Mode Rejection Ratio</td>
<td>R_S≤10k</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>PSRR Supply Voltage Rejection Ratio</td>
<td>See (4)</td>
<td>80</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>I_S Supply Current</td>
<td></td>
<td>1.8</td>
<td>2.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

(1) RETS 411X for LF411MH and LF411MJ military specifications.
(2) Unless otherwise specified, the specifications apply over the full temperature range and for V_S=±20V for the LF411A and for V_S=±15V for the LF411. V_{OS}, I_{B}, and I_{OS} are measured at V_{CM}=0.
(3) The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature, \(T_j \). Due to limited production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient temperature as a result of internal power dissipation, \(P_D \). \(T_j=T_A+\theta_{jA} P_D \) where \(\theta_{jA} \) is the thermal resistance from junction to ambient. Use of a heat sink is recommended if input bias current is to be kept to a minimum.
(4) Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice, from ±15V to ±5V for the LF411A and from ±20V to ±5V for the LF411A.

6.6 AC Electrical Characteristics

<table>
<thead>
<tr>
<th>PARAMETER (1)(2)</th>
<th>TEST CONDITIONS</th>
<th>LF411A</th>
<th>LF411</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIN</td>
<td>TYP</td>
<td>MAX</td>
</tr>
<tr>
<td>SR Slew Rate</td>
<td>V_S=±15V, T_A=25°C</td>
<td>10</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>GBW Gain-Bandwidth Product</td>
<td>V_S=±15V, T_A=25°C</td>
<td>3</td>
<td>4</td>
<td>2.7</td>
</tr>
<tr>
<td>e_{n} Equivalent Input Noise Voltage</td>
<td></td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>I_{n} Equivalent Input Noise Current</td>
<td></td>
<td>0.01</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>THD Total Harmonic Distortion</td>
<td>A_{V}=+10, R_L=10k, V_O=20 Vp-p, BW=20 Hz–20 kHz</td>
<td><0.02%</td>
<td></td>
<td><0.02</td>
</tr>
</tbody>
</table>

(1) Unless otherwise specified, the specifications apply over the full temperature range and for V_S=±20V for the LF411A and for V_S=±15V for the LF411. V_{OS}, I_{B}, and I_{OS} are measured at V_{CM}=0.
(2) RETS 411X for LF411MH and LF411MJ military specifications.
6.7 Typical Performance Characteristics

Figure 1. Input Bias Current

- $V_S = \pm 15V$
- $T_A = 25^\circ C$

Figure 2. Input Bias Current

- $V_{CM} = 0V$
- $V_S = \pm 15V$

Figure 3. Supply Current

- $-55^\circ C, 25^\circ C$
- $125^\circ C$

Figure 4. Positive Common-Mode Input Voltage Limit

- $-55^\circ C \leq T_A \leq 125^\circ C$

Figure 5. Negative Common-Mode Input Voltage Limit

- $-55^\circ C \leq T_A \leq 125^\circ C$

Figure 6. Positive Current Limit

- $V_S = \pm 15V$
- $125^\circ C$
- $25^\circ C$
- $-55^\circ C$
- 0 to 40 mA
- 0 to 15 mV
Typical Performance Characteristics (continued)

Figure 7. Negative Current Limit

Figure 8. Output Voltage Swing

Figure 9. Output Voltage Swing

Figure 10. Gain Bandwidth

Figure 11. Bode Plot

Figure 12. Slew Rate
Typical Performance Characteristics (continued)

- **Figure 13. Distortion vs Frequency**
 - $V_S = \pm 15V$
 - $T_A = 25^\circ C$
 - $A_v = 100$
 - $V_O = 20V_{p-p}$
 - $10k$

- **Figure 14. Undistorted Output Voltage Swing**
 - $V_S = \pm 15V$
 - $R_L = 2k$
 - $T_A = 25^\circ C$
 - $A_v = 1$
 - $< 1\%$ DIST

- **Figure 15. Open Loop Frequency Response**

- **Figure 16. Common-Mode Rejection Ratio**
 - $V_S = \pm 15V$
 - $R_L = 2k$
 - $T_A = 25^\circ C$
 - V_{CM}
 - V_O
 - $CMRR = 20 \log \frac{V_{CM}}{V_O}$
 - V_O
 - OPEN LOOP VOLTAGE GAIN

- **Figure 17. Power Supply Rejection Ratio**

- **Figure 18. Equivalent Input Noise Voltage**
Typical Performance Characteristics (continued)

Figure 19. Open Loop Voltage Gain

Figure 20. Output Impedance

Figure 21. Inverter Settling Time
6.8 Pulse Response \((R_L=2 \, k\Omega, \, C_L=10 \, pF)\)

- **Figure 22. Small Signal Inverting**
 ![Small Signal Inverting](image1)

- **Figure 23. Small Signal Non-Inverting**
 ![Small Signal Non-Inverting](image2)

- **Figure 24. Large Signal Inverting**
 ![Large Signal Inverting](image3)

- **Figure 25. Large Signal Non-Inverting**
 ![Large Signal Non-Inverting](image4)

- **Figure 26. Current Limit \((R_L = 100 \, \Omega)\)**
 ![Current Limit](image5)
7 Detailed Description

7.1 Overview

These devices are low-cost, high-speed, JFET input operational amplifiers with very low input offset voltage and input offset voltage drift. They require low supply current yet maintain a large gain bandwidth product and fast slew rate. In addition, well matched high voltage JFET input devices provide very low input bias and offset currents. The LF411 is pin compatible with the standard LM741 allowing designers to immediately upgrade the overall performance of existing designs.

These amplifiers may be used in applications such as high speed integrators, fast D/A converters, sample and hold circuits and many other circuits requiring low input offset voltage and drift, low input bias current, high input impedance, high slew rate and wide bandwidth.

7.2 Functional Block Diagram

7.3 Feature Description

The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (-IN). The amplifier amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The output voltage of the op-amp V_{\text{OUT}} is given by the equation V_{\text{OUT}} = A_{OL}(\text{IN}+ - \text{IN}-).

7.4 Device Functional Modes

7.4.1 Simplified Schematic

Figure 27. Simplified Schematic
Device Functional Modes (continued)

7.4.2 Detailed Schematic

Figure 28. Detailed Schematic
8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LF411 series of internally trimmed JFET input op amps (BI-FET II™) provide very low input offset voltage and input offset voltage drift. These JFETs have large reverse breakdown voltages from gate to source and drain eliminating the need for clamps across the inputs. Therefore, large differential input voltages can easily be accommodated without a large increase in input current. The maximum differential input voltage is independent of the supply voltages. However, neither of the input voltages should be allowed to exceed the negative supply as this will cause large currents to flow which can result in a destroyed unit.

8.2 Typical Applications

1. High Speed Current Booster
2. 10-Bit Linear DAC with No V_{OS} Adjust
3. Single Supply Analog Switch with Buffered Output

8.2.1 High-Speed Current Booster

![Diagram of High-Speed Current Booster]

Figure 29. High-Speed Current Booster
Typical Applications (continued)

8.2.1.1 Design Requirements

PNP = 2N2905
NPN = 2N2219
TO-5 heat sinks for Q6-Q7
±15V supplies.

8.2.1.2 Detailed Design Procedure

Exceeding the negative common-mode limit on either input will force the output to a high state, potentially causing a reversal of phase to the output. Exceeding the negative common-mode limit on both inputs will force the amplifier output to a high state. In neither case does a latch occur since raising the input back within the common-mode range again puts the input stage and thus the amplifier in a normal operating mode.

Exceeding the positive common-mode limit on a single input will not change the phase of the output; however, if both inputs exceed the limit, the output of the amplifier may be forced to a high state.

The amplifier will operate with a common-mode input voltage equal to the positive supply; however, the gain bandwidth and slew rate may be decreased in this condition. When the negative common-mode voltage swings to within 3V of the negative supply, an increase in input offset voltage may occur.

The LF411 is biased by a zener reference which allows normal circuit operation on ±4.5V power supplies. Supply voltages less than these may result in lower gain bandwidth and slew rate.

The LF411 will drive a 2 kΩ load resistance to ±10V over the full temperature range. If the amplifier is forced to drive heavier load currents, however, an increase in input offset voltage may occur on the negative voltage swing and finally reach an active current limit on both positive and negative swings.

Precautions should be taken to ensure that the power supply for the integrated circuit never becomes reversed in polarity or that the unit is not inadvertently installed backwards in a socket as an unlimited current surge through the resulting forward diode within the IC could cause fusing of the internal conductors and result in a destroyed unit.

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3 dB frequency of the closed loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately 6 times the expected 3 dB frequency, a lead capacitor should be placed from the output to the input of the op amp. The value of the added capacitor should be such that the RC time constant of this capacitor and the resistance it parallels is greater than or equal to the original feedback pole time constant.
Typical Applications (continued)

8.2.2 10-Bit Linear DAC with No V_{OS} Adjust

![10-Bit Linear DAC with No V_{OS} Adjust](image)

$$V_{OUT} = -V_{REF} \left(\frac{A_1}{2} + \frac{A_2}{4} + \frac{A_3}{8} + \ldots + \frac{A_{10}}{1024} \right)$$

$-10V \leq V_{REF} \leq 10V$

$0 \leq V_{OUT} \leq \frac{1023}{1024} V_{REF}$

where $A_N=1$ if the A_N digital input is high

$A_N=0$ if the A_N digital input is low

Figure 30. 10-Bit Linear DAC with No V_{OS} Adjust

8.2.2.1 Design Requirements

±15V supplies.

8.2.2.2 Detailed Design Procedure

See Section 9.2.1.2.

8.2.3 Single Supply Analog Switch With Buffered Output

![Single Supply Analog Switch With Buffered Output](image)

Figure 31. Single Supply Analog Switch With Buffered Output

8.2.3.1 Design Requirements

Single 12V supply.

8.2.3.2 Detailed Design Procedure

See Section 9.2.1.2.
9 Power Supply Recommendations

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines it is suggested that 0.1µF capacitors be placed as close as possible to the op amp power supply pins. The minimum power supply voltage is ±5V.

10 Layout

10.1 Layout Guidelines

As with most amplifiers, care should be taken with lead dress, component placement and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize “pick-up” and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

10.2 Layout Example

![Figure 32. LF411-N Layout](image)
11 Device and Documentation Support

11.1 Trademarks
All trademarks are the property of their respective owners.

11.2 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary
SLYZ022 — Ti Glossary.
This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp</th>
<th>Op Temp (°C)</th>
<th>Device Marking (4/5)</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF411ACN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>Call TI</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LF 411ACN</td>
<td>Samples</td>
</tr>
<tr>
<td>LF411CN/NOPB</td>
<td>ACTIVE</td>
<td>PDIP</td>
<td>P</td>
<td>8</td>
<td>40</td>
<td>Green (RoHS & no Sb/Br)</td>
<td>CU SN</td>
<td>Level-1-NA-UNLIM</td>
<td>0 to 70</td>
<td>LF 411CN</td>
<td>Samples</td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE:** Product device recommended for new designs.
- **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE

NOTES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 variation BA.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

<table>
<thead>
<tr>
<th>Audio</th>
<th>www.ti.com/audio</th>
<th>Applications</th>
<th>www.ti.com/automotive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>amplifier.ti.com</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
<td>Communications and Telecom</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
<td>Consumer Electronics</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated