1. (2 pts) In order for an object to move in a circular path, which of the following is (are) necessary? You may choose more than one answer if applicable.

a) A force in the direction of the object’s velocity.

b) A force perpendicular to the velocity, directed inward toward the center of the circular path.

c) A force perpendicular to the velocity, directed outward away from the center of the circular path.

d) A pathway tilted toward the center, in the case of a moving car, for example.

e) Friction, in the case of a moving car, for example.

2. (2 pts) A marble falls from rest through a jar of honey. Its velocity is given by

\[v(t) = v_T \left(1 - e^{-\frac{t}{3s}} \right) \frac{m}{s} \], where \(t \) is measured in seconds and \(v_T \) is the terminal velocity. About how many seconds does it take for the marble to reach a significant fraction (between \(\frac{1}{2} \) and \(\frac{3}{4} \), for instance) of the terminal velocity?

a) About 3 seconds.

b) About 30 seconds.

c) It depends on the value of \(v_T \).

d) Sorry, but the velocity doesn’t change, no matter how long you wait.

3. (3 pts) A 40 kg child plays on a tire-swing held by a single rope to the branch of a tree. If the tire has a mass of 8 kg and the rope is 5 m long, what is the maximum swing velocity the child can enjoy when she reaches the lowest point of the motion if the rope can only withstand a tension of 600 N?

a) 3.67 m/s

b) 4.72 m/s

c) 5.19 m/s

d) 6.08 m/s

The FBD of the tire/girl system shows the tension force upward and both weight forces downward. The radial (upward) acceleration is \(\frac{v^2}{r} \) where \(r \) is the length of the rope. Newton’s 2\(^{nd}\) Law becomes \(T - (m_{tire} + m_{girl})g = m\frac{v^2}{r} \). If we set \(T = 600 \) N and solve for \(v \), we’ll find the fastest speed the girl can have at the bottom of the swing before the tension exceeds this maximum and the rope breaks.

4. (3 pts) As a skydiver falls, he feels a resistive force \(R = \frac{1}{2} D \rho Av^2 \), where \(D \) is the drag coefficient, \(\rho \) is the density of air, \(A \) is the skydiver’s area in a plane perpendicular to his motion, and \(v \) is his velocity. If the skydiver has a mass \(m \), derive the expression for his terminal velocity \(v_T \) in terms of the variables given.

Just set the drag force and the weight force equal (true at terminal velocity) and solve for \(v, v_T = \sqrt{\frac{2mg}{D\rho A}} \)