This chapter covers the revolutionary advancements due to probably the most brilliant scientist who ever lived: Isaac Newton (lived 1641--1727). His greatest contributions were in all branches of physics. Kepler's discoveries about elliptical orbits and the planets' non-uniform speeds made it impossible to maintain the idea of planetary motion as a natural one requiring no explanation. Newton had to answer some basic questions: What keeps the planets in their elliptical orbits? On our spinning Earth what prevents objects from flying away when they are thrown in the air? What keeps you from being hurled off the spinning Earth? Newton's answer was that a fundamental force called ``gravity'' operating between all objects made them move the way they do.
Newton developed some basic rules governing the motion of all objects. He used these laws and Kepler's laws to derive his unifying Law of Gravity. I will first discuss his three laws of motion and then discuss gravity. Finally, several applications in astronomy will be given. This chapter uses several math concepts that are reviewed in the mathematics review appendix. If your math skills are rusty, study the mathematics review appendix and don't hesitate to ask your astronomy instructor for help. The vocabulary terms are in boldface.
I include images of world atlases from different time periods in this chapter and the previous one as another way to illustrate the advances in our understanding of our world and the universe. Links to the sites from which the photographs came are embedded in the images. Select the picture to go to the site.
When you think of motion, you may first think of something moving at a uniform speed. The speed = (the distance travelled)/(the time it takes). Because the distance is in the top of the fraction, there is a direct relation between the speed and the distance: the greater the distance travelled in a given time, the greater is the speed. However, there is an inverse relation between time and speed (time is in the bottom of the fraction): the smaller the time it takes to cover a given distance, the greater the speed must be.
To more completely describe all kinds of changes in motion, you also need to consider the direction along with the speed. For example, a ball thrown upward at the same speed as a ball thrown downward has a different motion. This inclusion of direction will be particularly important when you look at an object orbiting a planet or star. They may be moving at a uniform speed while their direction is constantly changing. The generalization of speed to include direction is called velocity. The term velocity includes both the numerical value of the speed and the direction something is moving.
Galileo conducted several experiments to understand how something's velocity can be changed. He found that an object's velocity can be changed only if a force acts on the object. The philosopher RenÈ Descartes (lived 1596--1650, picture at left) used the idea of a greater God and an infinite universe with no special or privileged place to articulate the concept of inertia: a body at rest remains at rest, and one moving in a straight line maintains a constant speed and same direction unless it is deflected by a ``force''. Newton took this as the beginning of his description of how things move, so this is now known as Newton's 1st law of motion. A force causes a change in something's velocity (an acceleration).
An acceleration is a change in the speed and/or direction of motion in a given amount of time: acceleration= (the velocity change)/(the time interval of the change). Something at rest is not accelerating and something moving at constant speed in a straight line is not accelerating. In common usage, acceleration usually means just a change in speed, but a satellite orbiting a planet is constantly being accelerated even if its speed is constant because its direction is constantly being deflected. The satellite must be experiencing a force since it is accelerating. That force turns out to be gravity. If the force (gravity) were to suddenly disappear, the satellite would move off in a straight line along a path tangent to the original circular orbit.
A rock in your hand is moving horizontally as it spins around the center of the Earth, just like you and the rest of the things on the surface are. If you throw the rock straight up, there is no change in its horizontal motion because of its inertia. You changed the rock's vertical motion because you applied a vertical force on it. The rock falls straight down because the Earth's gravity acts on only the rock's vertical motion. If the rock is thrown straight up, it does not fall behind you as the Earth rotates. Inertia and gravity also explain why you do not feel a strong wind as the Earth spins---as a whole, the atmosphere is spinning with the Earth.
Newton's first law of motion is a qualitative one---it tells you when something will accelerate. Newton went on to quantify the amount of the change that would be observed from the application of a given force. In Newton's second law of motion, he said that the force applied = mass of an object × acceleration. Mass is the amount of material an object has and is a way of measuring how much inertia the object has. For a given amount of force, more massive objects will have a smaller acceleration than less massive objects (a push needed to even budge a car would send a pillow flying!). For a given amount of acceleration, the more massive object requires a larger force than a less massive object.
acceleration | force | inertia |
---|---|---|
mass | Newton's 1st law | Newton's 2nd law |
Newton's 3rd law | velocity |
Spherically symmetric objects (eg., planets, stars, moons, etc.) behave as if all of their mass is concentrated at their centers. So when you use Newton's Law of Gravity, you measure the distance between the centers of the objects.
In a bold, revolutionary step, Newton stated that his gravity law worked for any two objects with mass---it applies for any motions on the Earth, as well as, any motions in space. He unified celestial and terrestrial physics and completed the process started by Copernicus of removing the Earth from a unique position or situation in the universe. His law of gravity also explained Kepler's 1st and 2nd laws.
Because the masses are in the top of the fraction, more mass creates more gravity force. This also means that more massive objects produce greater accelerations than less massive objects. Since distance is in the bottom of the fraction, gravity has an inverse relation with distance: as distance increases, gravity decreases. However, gravity never goes to zero---it has an infinite range (in this respect it is like the electrical and magnetic forces). Stars feel the gravity from other stars, galaxies feel gravity from other galaxies, galaxy clusters feel gravity from other galaxies, etc. The always attractive gravity can act over the largest distances in the universe.
There is no way to get rid of the force of gravity. If you want to prevent a body from producing a gravitational acceleration on an object, you need to use a second body, with the same amount of gravity pull as the first body, in a way that its gravity pulling on the object is in the opposite direction. The resulting accelerations due to the forces from the two bodies will cancel each other out.
An object's weight depends on the pull of the gravitating object but the object's mass is independent of the gravity. For example, Joe Average weighs himself on the Earth's surface and then on the Moon's surface. His weight on the Moon will be about six times less than on the Earth but the number of atoms in his body has not changed so his mass is the same at the two places. In the old English unit system, there is a ``pound'' of force and ``pound'' of mass. On only the Earth's surface, an object's pound of mass = the number of pounds of force felt by the object due to the Earth's gravity.
In the metric system there is no confusion of terms. A kilogram is a quantity of mass and a newton is a quantity of force. One kilogram (kg) = 2.205 pounds of mass and 4.45 newtons (N) = 1 pound of force. If someone uses ``pounds'', be sure you understand if s/he means force or mass!
How do you do that?To find something's weight in newtons, you multiply the mass in kilograms by the acceleration of gravity in the units of meters/seconds2. For example: Joe Average has a mass of 63.5 kg and he feels a force of gravity on the Earth = 63.5 kg × 9.8 m/s2 = 623 kg m/s2 = 623 N. His weight is 623 N. The other value in the preceding equation, 9.8 m/s2, is the acceleration due to gravity close to the Earth's surface. Joe Average's weight at other places in the universe will be different but his mass will remain the same.
|
kilogram | mass | newton |
---|---|---|
weight |
distance | inverse | inverse square |
---|---|---|
1 | 1/1 = 1 | 1/12 = 1 |
2 | 1/2 = 0.5 | 1/22 = 1/4 = 0.25 |
3 | 1/3 = 0.33 | 1/32 = 1/9 = 0.11 |
4 | 1/4 = 0.25 | 1/42 = 1/16 = 0.0625 |
7 | 1/7 = 0.14 | 1/72 = 1/49 = 0.02 |
10 | 1/10 = 0.1 | 1/102 = 1/100 = 0.01 |
100 | 1/100 = 0.01 | 1/1002 = 1/10,000 = 0.0001 |
Example: Joe Average has a mass of 63.5 kilograms, so he weighs 623 newtons (=140 pounds) on the Earth's surface. If he moves up 1 Earth radius (= 6378 kilometers) above the surface, he will be two times farther away from the Earth's center (remember that distances are measured from center-to-center!), so his weight will be four times less, or 623/4 newtons = 155.8 newtons (= 140/4 pounds); NOT two times less, or 623/2 newtons = 311.5 newtons. If he moves up another Earth radius above the surface, he will be three times farther away than he was at the start, so his weight will drop by a factor of nine times, NOT 3 times. His weight will be 623/9 newtons = 69.22 newtons (= 140/9 pounds); NOT 623/3 newtons = 207.7 newtons. His mass will still be 63.5 kilograms. Figure below illustrates this.
Let us generalize this for any situation where the masses do not change: the force of gravity at distance A = (the force of gravity at distance B) × (distance B / distance A)2. Notice which distance is in the top of the fraction! To use this relation, have the gravity at distance A represent the unknown gravity force you are trying to find and the gravity at distance B represent the reference gravity force felt at the reference distance B.
How do you do that?Let's find where the weight values in the inverse square law figure come from.For Mr. Average's case the reference weight is his weight on the surface of the Earth = 623 N. His weight at 6378 kilometers above the surface is gravity at A = 623 × [6378/(2 × 6378)]2 = 623 × 1/22 = 623 × 1/4 = 155.8 N. When he is at two Earth radii above the surface, the gravity at A = 623 × [6378/(3 × 6378)]2 = 623 × 1/32 = 623 × 1/9 = 69.22 N. |
A boulder falling toward the Earth is pulled by a stronger gravity force than the marble, since the boulder's mass is greater than the marble, but the boulder also has greater resistance to a change in its motion because of its larger mass. The effects cancel each other out, so the boulder accelerates at the same rate as the marble. The same line of reasoning explains the equal acceleration experienced by Jupiter and the satellite.
You can use Newton's second law of motion F = m × a (which relates the acceleration, a, felt by a object with mass m when acted on by a force F) to derive the acceleration due to gravity (here replace a with g) from a massive object:
The force of gravity = |
| = m g | ||
so | ||||
g = |
| . |
The acceleration decreases with the SQUARE of the distance (inverse square law). To compare gravity accelerations due to the same object at different distances, you use the gravity acceleration g at distance A = (the gravity acceleration g at distance B) × (distance B / distance A)2. Notice which distance is in the top of the fraction. An example of using the inverse square law is given in the ``How do you do that?'' box below.
How do you do that?Find how many times more gravitational acceleration the Galileo atmosphere probe felt at 100,000 miles from Jupiter's center than the orbiter felt at 300,000 miles. You have
|
You can determine masses of stars and planets in a similar way: by measuring the acceleration of objects orbiting them and the distance between the star or planet and the object. A small object falling to the Earth has mass and, therefore, has a gravitational acceleration associated with it: the Earth is accelerated toward the falling object (an example of Newton's third law)! However, if you plug some typical masses of terrestrial objects (less than, say, 1000 kilograms) into the acceleration formula, you will see that the amount the Earth is accelerated is vastly smaller than the falling object's acceleration. You can ignore the Earth's acceleration.
A side note: determining the mass of the Earth also depends on knowing the value of the gravitational constant G. The constant was first measured by Henry Cavendish in 1798. After discussing his experimental results, he then applied his measurement to the subject of his paper's title: ``Weighing the Earth.''
But what is gravity? Newton understood how the gravity force affected the motion of objects but not why gravity worked the way it did. Recognizing the limits of his knowledge, he adopted an instrumentalist view: the scientist's job is to capture observations in precise mathematical equations; explain the ``how'' not the ``why''. Only things verified by our experience of the world are admissible into science. Though the ``why'' question is intriguing and a few scientists will spend years trying to answer it, most scientists share Newton's instrumentalist view.
With Newton, there was no longer a hierarchical-teleological universe (one designed by God for some purpose with man playing a crucial role in the plan). The universe was now a perfect machine, based on mathematics, set in motion by God long ago. God is the reference point for absolute space and time. Newtonian mechanics requires an absolute coordinate system to keep things sensible (according to Newton this also gave God something to do).
With the success of Newton's ideas, a major change occurred in how people viewed the world around them. Reality was completely reduced to material objects. Ideas, thought, feelings, and values were secondary. Newtonism undercut the role of God and religion and the validity of science: science became just a subjective perspective of the machine universe.
Descartes saw the need to rescue thoughts, ideas and values. He developed a mind-body dualism: a world of thought and spirit exists independent of, but parallel to, the material world. There is a correspondence between the God-inaugurated, mathematical thoughts of scientists and the motions in the physical world. Descartes said that mathematical ideas work so well because there is a pre-established parallelism between the physical world and the human mind. What is real does NOT depend on us---this is probably the actual completion of the Copernican revolution and was soon so widely accepted that it became ``common sense'' (how about that for a paradigm shift!).
Go to Orbits and Tides sections
last updated 25 January 1999
(661) 395-4526
Bakersfield College
Physical Science Dept.
1801 Panorama Drive
Bakersfield, CA 93305-1219